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Abstract. Uniform Resource Locators (URLs) are integral to the Web
and have existed for nearly three decades. Yet URL parsing differs subtly
among parser implementations, leading to ambiguity that can be abused
by attackers. We measure agreement between widely-used URL parsers
and find that each has made design decisions that deviate from parsing
standards, creating a fractured implementation space where assumptions
of uniform interpretation are unreliable. In some cases, deviations are
severe enough that clients using different parsers will make requests to
different hosts based on a single, “equivocal” URL. We systematize the
thousands of differences we observed into seven pitfalls in URL parsing
that application developers should beware of. Finally, we demonstrate
that this ambiguity can be weaponized through misdirection attacks that
evade the Google Safe Browsing and VirusTotal URL classifiers. URL
parsing libraries have made a tradeoff to favor permissiveness over strict
standards adherence in URL parsing. It is our hope this work will aid in
motivating a systemic adoption of a more unified URL parsing standard
enabling a more secure Web.
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1 Introduction

Uniform Resource Locators (URLSs) play a crucial role in the Internet, originating
in the early 1990’s as a standardized addressing and parameterization system for
the Web |21} [39]. Since then, URLs have been overhauled to clarify their syntax
with relation to relative locators [31], IPv6 addresses [32], Punycode for non-
ascii hostnames [25]|, and the broader notion of a Uniform Resource Identifier
(URI) [18, 19, 20] Further, the Web Hypertext Application Technology Working
Group (WHATWG), a consortium of major Web browser vendors, has defined
its own “living” URL parsing standard [4]. Unfortunately, adherence to these
standards has not been strict, leading to inconsistencies across implementations
when parsing some URLs.

Attackers have taken note of these inconsistencies and increasingly abuse
URL parsing differences [55} |56, (9, 54 [58 [34) |41} |45]. In these exploits, attack-
ers were able to trigger application-layer and network-layer vulnerabilities with
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URLs parsing to a legitimate resource for one parser (e.g., a URL security classi-
fier, a server endpoint) but a malicious resource for their victim (e.g., a browser,
a server-side cache, etc.). To underscore the severity of this problem, consider
Marlinspike’s 2009 demonstration of canonical name parsing errors in TLS cer-
tificate generation infrastructure [44]; while this issue was resolved for TLS,
parsing inconsistencies were exploited in a URL parser as recently as 2019 [58].

While anecdotal demonstrations of these “equivocal” URLs have appeared in
industry reports, to date there has not been a systematic study of the root cause
of this problem — inconsistent implementation of URL parsing. In this work,
we measure the implementation space of URL parsing by analyzing the behav-
ior of fifteen popular parsers. We focus on ambiguities in hostnames because of
their potential impact at the network layer — sending clients with different URL
parsers to completely different network locations. We generate and test thou-
sands of fuzzing inputs to compare the level agreement of parsers with reference
implementations, and among each other. Unfortunately, we find that disagree-
ment is widespread, with little consensus on how to handle edge-case URLs. We
then categorize the error sources that cause some URLs to only be parsable by
certain parsers — or, worse, URLs that yield differing DNS-compliant hostnames
for different parsers. We systematize these error sources into seven pitfalls that
application developers need to beware of to avoid hostname equivocation.

To highlight the security implications of URL hostname equivocation, we go
on to demonstrate how newly-discovered errors can allow equivocal URLs to
evade URL classification. In contrast to prior work that has exclusively targeted
server-side parsing errors at the application layer, we demonstrate that client-
side URL security classifiers are also vulnerable. Specifically, we demonstrate that
URLs with ambiguous hostnames can trick the popular Google Safe Browsing and
VirusTotal URL classifiers into issuing an incorrect threat classification.

Fixing these inconsistencies among parsers would require community-wide
agreement on a parsing standard whose strict implementation would be a break-
ing change. We perform preliminary measurements demonstrating the real-world
compatibility incentive for URL parsers to eschew strict standardization in fa-
vor of being as permissive as possible in what they accept. We hope this work
motivates the systemic adoption of a more unified URL parsing standard.

2 Related Work

URLs are composed of syntactic sections separated by delimiters. Figure [[|shows
the syntactic segments that make up a URL. Schemes are defined by the Internet
Assigned Numbers Authority (TIANA) [3]. We focus in this work only on abso-
lute URLs using the HTTP and HTTPS Schemes. Following the scheme is the
optional UserlInfo section, a Hostname or IP address, and an optional TCP Port.
The Path commonly reflects a hierarchical naming system within a Web domain.
Queries can carry parameters for which “&” and “;” are suggested as delimiters
between parameters. Finally, Fragments are not sent in HTTP(S) requests, but
are used by clients to locate specific portions of a resource after it is requested
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o] [

https://username:pw@example.com:443/path/to.file?this=query#fragment

Fig.1: URL Syntactic Elements
URLs use delimiters between each syntactic element. We find that URL parsers
handle illegal characters and delimiters differently, yielding inconsistent results.

and received. Each URL segment has a limited character set, and octets outside
that character set can be encoded with an escape sequence of a percent sign
followed by two hexadecimal digits.

Driven by the need for interoperability with the Web, today there exists a
broad ecosystem of URL parsing implementations. URL parsing libraries are
standard issue with major programming languages. Further, various web clients,
command line utilities, and web servers all implement their own URL parsers.
The security of the Web depends, in part, on the basic assumption that all of
these parsers will resolve a given URL in the same way.

2.1 Exploiting Human Misinterpretation of URLs

URLs can be made misleading to users, who fall prey to attacks like phishing.
When users misunderstand the guarantees of HT'TPS |10}, 130} 28, |29, |52, |42], fail
to observe the Fully Qualified Domain Name (FQDN) of a URL |57, [26, 13|, or
are unable to parse a URL [48| |11], attackers may convince them to reveal secrets
by impersonating a legitimate organization. Phishing has been widely studied,
and a host of mitigations have been designed to protect users from falling victim
to these attacks. These include automatically phishing URL classifiers |15} |49}
60, 49, |40} [33] [12] |46, |14], phishing detection |51} |43|, user education |37, |50, [36]
38, 22|, and improved user interfaces [48, 11} |10, 30} |28, 29, 52, 43].

2.2 Exploiting Machines’ Inconsistent URL Parsing

Unfortunately, phishing-like URL misinterpretations can also occur in software.
URL parsing differences gained widespread attention in 2009 following Carretoni
and di Paola’s demonstration of HTTP Parameter Pollution attacks [24]. This
attack abused differences in the parsing of URL query parameters between end-
points and security mechanisms, enabling attackers to bypass input filtering and
sanitization checks. Subsequent prior works developed tools to automatically
detect HTTP parameter pollution vulnerabilities in websites |17, (16| [23]. While
query parameter parsing differences can have serious implications for application-
layer security, they cannot affect the authenticity of the web server; in contrast,
we demonstrate that hostname parsing differences enable equivocation about
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web server identity. Further, as we will show in this work, lessons learned from
parameter parsing attacks have not been applied to ambiguities URL hostname
parsing.

More recently, several Blackhat talks and Common Vulnerabilities and Ex-
posures (CVEs) have leveraged URL parsing ambiguity to perform server-side
attacks. Tsai showed how inconsistent strategies for normalizing paths containing
“./” allowed access to forbidden resources when combined with the ill-defined
syntax for URL path parameters [56]. A bug in the Google Chrome browser on
iOS in 2018 allowed websites to use the HTML 5 history API to change the
origin of the tab and run in other Web origins [54]. Wang et al. showed they
could misdirect OAuth redirections and evade allowlist filters using URL parsing
discrepancies [58]. Kettle used the fact that browsers accept both backslashes
and forward slashes as path delimiters to convince websites to poison their own
HTML cache entries [34]. Ahmed reported a similar error in an Node package in
CVE-2018-3774 |9]. Tsai and Leitschuh both used URL parsing ambiguities to
trick server-side middleboxes to forward protocol-smuggled requests to resources
they should not have been able to contact. |55, [41] Mufioz and Tsai reported
parsing errors to curl which were patched [45] [55]. While these exploits provide
anecdotal evidence of individual parsing problems, in this work we systemati-
cally explore the ecosystem of URL parsing ambiguities, testing many parsers to
create a catalog of inconsistencies that point to a systemic issue in the ecosys-
tem. Further differentiating us from prior work, we are the first to demonstrate
that such attacks are possible on client-side URL classifiers, directly enabling
enabling user attacks like phishing.

3 Methodology

To date, URL parsing exploits have been reported in the context of specific
vulnerabilities and parsing implementations, but it is not clear to what extent
inconsistencies in URL parsing are widespread. To gain a more comprehensive
understanding of the ecosystem, we consider a diverse set of fifteen parsers that
span standard libraries, web servers, and command line tools. Parsers were drawn
from libraries written in popular languages (Java, Go, Ruby, JavaScript, Python,
PHP, Perl, C/C++), tools (wget, curl), and web servers (Apache, NGINX); a
complete description of these parsers can be found in Table [f] of Appendix A.

3.1 “Ground Truth” Reference Parsers

An important first step in our analysis is to establish a reasonable baseline for
how parsers should behave. Naturally, one such baseline should be RFC 3986 |20]
that defines the syntax for uniform resource identifiers (URIs), of which URLSs
are a subset. RFC 3986 provides a formal grammar, but not an implementation,
so we used the grammar to create our own reference implementation for absolute
URL parsing in Python3. We note that RFC 3986 rejects non-ASCII input and
expects any disallowed bytes to be properly escaped before parsing.
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In contrast, an equally valid baseline to consider is how major web software
vendors handle URLs in their day-to-day experience, including URLs with non-
ASCII characters. For such a baseline, we look to the WHATWG’s “living” URL
standard [4] informed by browsers day-to-day interaction with non-ACII URLs.
WHATWG implicitly defines a standard for URL parsing by releasing a parsing
algorithm along with a reference implementation of their parsing algorithm in
JavaScript. We include this as our second reference parser.

3.2 Test Input Enumeration

For each of the fifteen parsers, we then applied a large set of URL test inputs and
recorded each parser’s response. We focus specifically on parsing discrepancies in
the hostname field. To do so, we started with a completely valid URL containing
a hostname that was consistently parsed across all implementations. We then
applied three mutually exclusive sets of mutations to this URL to enumerate a
large corpus of test inputs. Each mutation inserts one to four bytes in the middle
of the hostname field, as described below. Rather than using random fuzzing, we
iterated over these sets in their entirety, resulting in a total of 98,425 test cases.

P1. The first input set inserted every possible octet from 0-255, which includes
all standard ASCII codes (0-127) and extended ASCII codes (128-255). This
test set probes parsers’ permissiveness of invalid input as well as handling of
duplicate delimiters.

P2. The second input inserted all 65,536 possible combinations of two octets.
This test set further tests delimiter confusion by probing with an additional
random byte, as well as the handling of valid and partial unicode characters.

P3. The third input set inserted each of the 32,634 valid Unicode code points
listed in the Unicode Data list of the Unicode Character Database [7]. Each valid
unicode character is a minimum of three bytes when encoded with UTF-8. This
test set exhaustively probes parsers’ handling of unicode characters.

Along with different parsing logic, our test parsers were also written in a
variety of languages and software environments with different implementations
of character strings, file I/O, etc. For each parser’s testing apparatus, we took
great care to ensure that the core parsing logic handled the exact same bytes
for each test input. Mostly, this entailed paying close attention to how different
string data types might apply automatic character conversions, although we
note that in practice these differences are another potential source of parsing
ambiguity. For two parsers we were forced to cast our payload URLSs into string
types that cannot hold arbitrary bytes to be compatible with the library. We
have noted this conversion in our full parser list in Table [4] of Appendix A.
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Parser Overall P1 (256) P2 (65,536) | P3 (32,635)
rfc3986 100.0% 100.0% 100.0% 100.0%
Ruby uri 99.95% 100.0% 99.93% 100.0%
PHP parse _url 97.79% 94.14% 96.7% 100.0%
Python3 urllib.urlparse 90.67% 82.81% 86.06% 100.0%
WHATWG NodelJS 59.74% 83.2% 83.73% 11.38%
Python3 furl 51.62% 51.95% 75.89% 2.88%
Golang goware/urlx 30.08% 44.92% 45.01% 0.0%
Java.net.URI 28.74% 49.61% 42.94% 0.05%
Golang net/url 26.61% 47.66% 39.78% 0.0%
libcurl4-openssl 23.19% 44.92% 34.66% 0.0%
wget 22.61% 44.53% 33.78% 0.0%
nginx 7.44% 32.03% 11.05% 0.0%
Apache Portable Runtime 7.2% 32.03% 10.69% 0.0%
Perl URI 6.68% 31.64% 9.92% 0.0%
NodeJS Legacy 4.94% 26.95% 7.32% 0.0%

Table 1: Agreement with RFC 3986 Parser

We show agreement with our RFC reference parser across URLs perturbed by
input sets P1, P2,and P3 as well as overall. Parsers are sorted by their overall
agreement with the standards of RFC 3986. Ruby and PHP follow the RFC
with a high degree of consistency, but the remainder of the parsers are clearly
not matching RFC 3986’s grammar.

4 Results

We now report on the results of our analysis in terms of agreement between
parsers on each of the test inputs. We consider two axes of agreement — consis-
tency with the reference parsers, and overall consistency across all fifteen parsers
— for the UserInfo, Host, Path, Query, and Fragment segments of each test in-
put. To ensure a conservative analysis, we adopt a generous definition of what
it means for two parsers to agree on a URL’s parse. If both parsers rejected
the URL with an error, we consider this as agreement regardless of whether
the same error is thrown. We also ignore whether the parser includes the de-
limiter of a syntactic segment (e.g, ‘/’ in ‘‘/index.htm1’’). Because DNS is not
case-sensitive, we also ignore hostname case in the parser output.

4.1 Disagreement with Reference Parsers

After testing each parser on all test inputs, we then sorted them by their level
of agreement with each of the reference parsers. Agreement with RFC 3986 is
given in Table[I] Only three of the parsers are often in agreement with the RFC —
Ruby URI (99.9%), PHP’s filter _var() plus parse_url() functions (97.79%), and
Python3’s urllib.urlparse (90.67%). However, even among these high-agreement
parsers, we observed differences on how strict or lenient they were on certain
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Parser Overall P1 (256) P2 (65,536) | P3 (32,635)
WHATWG NodeJS 100.0% 100.0% 100.0% 100.0%
Python3 urllib.urlparse 66.95% 97.27% 94.51% 11.38%
PHP parse_url 58.09% 78.91% 81.27% 11.38%
Ruby uri 59.78% 83.2% 83.8% 11.38%
rfc3986 59.74% 83.2% 83.73% 11.38%
Python3 furl 49.77% 51.56% 73.11% 2.88%
NodeJS Legacy 36.1% 27.73% 9.98% 88.62%
Golang goware/urlx 21.67% 28.91% 32.11% 0.64%
Java.net.URI 19.9% 32.81% 29.42% 0.69%
Golang net/url 19.19% 33.98% 28.36% 0.64%
libcurl4-openssl 17.92% 35.55% 26.46% 0.64%
wget 17.57% 35.16% 25.93% 0.64%
nginx 15.19% 46.09% 92.32% 0.64%
Apache Portable Runtime 15.17% 46.48% 22.28% 0.64%
Perl URI 14.58% 46.09% 21.72% 0.0%

Table 2: Agreement with WHATWG Parser

We show agreement with the WHATWG reference parser across URLs perturbed
by input sets P1, P2,and P3 as well as overall. Not only are parsers not following
RFC 3986, they are also not following the WHATWG’s alternative parsing al-
gorithm that handles international characters in URLs. The WHATWG parsing
algorithm disagrees with most of these tested parsers most of the time.

inputs. For example, Ruby URI allows some octets outside the permitted char-
acter set such as low ASCII bytes in the query string. PHP was sometimes more
strict and rejects some hostnames that could not be used with the DNS but
are allowed by RFC 3986 containing characters like tilde and asterisk. However,
PHP does allow a fragment to contain another illegal # delimiter. Python3
was more lenient, parsing URLs with illegal low ASCII bytes like 0x10 (new-
line) in the hostname. The WHATWG reference parser agreed with RFC 3986
just 59.74% of the time, while the remaining ten parsers agreement ranges from
51.62% (Python3 furl) to as low as 4.94% (NodeJS Legacy).

Agreement with the WHATWG parser is given in Table [2] Overall, the test
parsers agreed more often with the older RFC than with the WHATWG’s living
standard. In fact, the RFC 3986 parser and the three high-agreement parsers
from the previous test again boast the highest agreement with WHATWG.

Parsers are not following the WHATWG standard when handling Unicode.
Recall that the P3 set tests parsers handling of UTF-8 encoded Unicode char-
acters. Interestingly, even though one of the goals of the WHATWG parser is
to standardize handling of non-ASCII URLSs, agreement on the P3 input set is
very poor. In fact, with the exception of NodeJS Legacy (88.62%), most pars-
ing agreement on P3 only negligibly improves with WHATWG over RFC 3986,
which does not support Unicode at all.
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Fig. 2: Pairwise Agreement Among Tested URL Parsers

Intersections of parsers are shaded according to their overall agreement on a lin-
ear gradient from white (0% agreement) to black (100% agreement). No agree-
ment was perfect, but we observe two dark clusters of high correlation at the bot-
tom of the figure. One is centered around RFC 3986 and the other included Java,
Golang, libcurl4, NGINX, Apache, and wget. The Furl, Perl, NodeJS Legacy, and
WHATWG parsers do not closely match any other tested parser.

4.2 Disagreement Among All Parsers

Since the parsers do not consistently follow either reference implementation, it
may be the case that parsing behavior is dictated by some other hidden standard
or common practice. This would explain the Table |2| results in which many
parsers disagree with the WHATWG parser at a very similar rate for the P3 test
set (0.64% agreement). To investigate, we next calculated the pairwise agreement
between each of the fifteen parsers for the combined test set of 98,445 URLs.
This resulted in a total of 105 agreement calculations for each of the unique
parser pairings.

We illustrate the agreement among all these pairs in Figure 2] with darker
shading indicating more agreement and lighter shading indicating less agreement.
The two dark triangles towards the bottom of the figure indicate two families
of similarly behaving parsers. To the right-hand side, it can be seen that Ruby,
Python3 urllib.urlparse, and PHP strictly adhere the RFC 3986 reference parser.
The cluster to the left-hand side consists of Java.net.URI, the Golang parsers,
NGINX, Apache, wget, and libcurl4. Like the first cluster, their agreement is not
perfect, but is highly similar. Upon investigation, this cluster behaves differently
from RFC 3986 because it accepts invalid octets into the hostname without
throwing an error; this approach allows for internal consistency because such
octets are not delimiters, and the illegal bytes could be converted to Punycode
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later. In contrast, RFC 3986, or even the more permissive RFC 3987, would au-
tomatically escape illegal bytes or reject URLs with invalid octets. Finally, unlike
WHATWG, this cluster does not accept illegal octets lower than the acceptable
ASCII character range. Overall, this experiment underscores the fractured na-
ture of the space of URL implementations, where arbitrary and invalid inputs
are handled very differently depending on which parser is chosen.

5 A Taxonomy of URL Parsing Pitfalls

Having shown the extent of disagreement between URL parsers, we now consider
the root causes of this disagreement. We first grouped each URL test input by
the sets of parsers that agreed on its hostname; for example, two URLs would
form a group if they caused errors in the same six parsers and were parsed to the
same hostname by the remaining nine. From our 98,445 URLs, we created 134
groups using this method. Because many groups described inputs that results
exclusively in errors and DNS-incompatible hostnames, we further down-selected
to 17 groups for which there were at least two DNS-compatible hostnames in
the results set. We then manually inspected each group to understand the cause
of the inconsistency.

Ultimately, we arrived at a taxonomy of just seven potential URL parsing
pitfalls that account for the all of the hostname equivocation inconsistencies
observed in our experiments. We describe each pitfall in the remainder of this
section, providing examples of each in Table 3] We also report on the effects
of these equivocal URLs on the Chrome and Firefox browsers, as well as their
embedded JavaScript engines. Browser design choices in this space will prove
important in our examples of malicious equivocal URLs in Section [f]

5.1 Seven Pitfalls of URL Parsing Causing Hostname Equivocation
Pitfall 1: Null Bytes

In C, strings are traditionally terminated by a null byte. In higher-abstraction
languages, the length property is often explicitly tracked, allowing strings con-
taining null bytes. This technicality enabled Marlinspike’s 2009 equivocations of
subject names in TLS certificates [44].

URL parsers behave differently due to this same split when faced with a URL
containing an illegal null byte. URL 1 in Table[3is an equivocal URL built on this
discrepancy. It places a null byte in the UserInfo section of the URL. The Golang,
Java, PHP, and Ruby parsers correctly reject URL 1 as a malformed URL. On the
other hand, Perl, PHP, and Python3 are willing to parse this URL and consider
the null byte as part of the UserInfo. This set of parsers therefore considers
this URL to point to “t.co”. C-language based parsers including libcurl4, wget,
and the Apache Portable Runtime (APR) truncate URLs to the first null byte
because of their built-in null-terminated string assumptions. However, because
NGINX uses a custom string implementation to track string length, it is not
subject to this pitfall despite being written in C.
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I. Equivocal URL Examples

Equivocal URL Example Option A Option B

U1l. https://n.pr[0x00]Qe.gg e.gg n.pr

U2. https://n.pr\Qe.gg e.gg n.pr

U3. https://n.pr|[e.gg e.gg n.pr

Ud4. https://n.pr#Qe.gg n.pr e.gg

US5. https://n.pr%2ee.gg n.pr.e.gg n.pr

US6. https://n.pr[0x0Ale.gg n.pre.gg n.pr

U7. https://n.pr[0xDDIADCBD]e.gg|n.xn—pre-hwisl.gg|n.xn—pre-bdado3gf.gg

US8. https://n.pr[0xC4B0|Qe.gg n.xn—prie-swc.gg | n.xn—pre-tfadh.gg
C: n.prie.gg |D: n.xn—pre-tfadx.gg

II. Results of Parsing Each Equivocal URL

Parser Ul1|U2|U3|U4 | U5 |Ue6 | U7 | U8
NodeJS WHATWG A B |[ERR| A | A | A |[ERR| A
RFC 3986 ERR|ERR|ERR|ERR| err |[ERR|ERR|ERR
Golang net/url ERR|ERR| err | A |ERR|ERR| err | err
Golang goware/urlx ERR|ERR|ERR| A |ERR|ERR| err | C
Java.Net.URI ERR|ERR|ERR|ERR|ERR|ERR|ERR|ERR
PHP parse url ERR|ERR|ERR| A |ERR|ERR|ERR|ERR
Python3 urllib A A A A |ERR| err |[ERR|ERR
Python3 furl A A | err | A |[ERR| err | err | err
NodeJS legacy A B B A B B A | A
Ruby ERR|ERR|ERR|ERR| err |[ERR|ERR|ERR
wget url.c B A |er | A A |ERR| err | err
libcurl4 B A |er | A | err |[ERR| err | err
Perl URI A A |er | A A |er | B B
Firefox - B |ERR| A A A |ERR| A
JS in Firefox A B |ERR| A A A |ERR| D
Chrome - B |ERR| A A A |ERR| A
JS in Chrome A B |ERR| A A A |ERR| D
Apache B A |er | A | err | err | err | err
NGINX ERR| err | err | B | err [ERR|ERR|ERR

Table 3: Equivocal URL Examples with Parsing Results

In part I, eight examples of equivocal URLs are provided that, when parsed,
yield at least two different DNS-compatible hostnames. Square brackets in these
examples enclose a hex representation of octet(s) for clarity. In part II, parsing
results for each example are provided. A, B, C and D indicate which option from
part I each parser returned. Capital “ERR” signifies that the indicated parser
threw an error for that example. Lowercase “err” indicates the parser did not
throw an error, but extracted a hostname that is not compatible with the DNS.
The only parser to throw an error for every example here is Java’s URI parser.
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Pitfall 2: Backslash Correction

URL 2 in Table [3] uses another illegal byte in a UserInfo section. Browsers
have a particular treatment for the illegal \ character, making themselves am-
bivalent to the difference between Windows and *nix file path separators. When
a backslash is present in a UserInfo section, it is treated as if it were a delimiter
signalling the start of the URL path. This means that a backslash will be cor-
rected to a forward slash when pasted into a browser. Illegal backslashes cause
either an error or are treated as a part of the UserInfo in all parsers except the
browsers. Both Firefox and Chrome change the backslash to a delimiting forward
slash, which makes what was formerly a UserInfo string into the hostname. RFC
3986 considers this an invalid URL because a backslash is not allowed anywhere.
The WHATWG parser is more permissive, and accepts the UserInfo section as-
is. Several other parsers either allow or automatically encode the backslash and
accept the URL. This pitfall has so far been exploited several times |58 |41} 9].

Pitfall 3: Overeager Percent Decoding

The official way to include arbitrary bytes in URLs is to URL-encode them in
triplets of the form %FF with a percent sign followed by two case-insensitive hex
digits. These digits are allowed in hostnames, but will not be compatible with
the DNS as such. The example in URL 5 of Table [3]encodes one of the otherwise
allowed periods in the hostname with percent encoding. When parsed, browsers
and Perl convert this automatically into a period. The legacy JavaScript parser
simply terminates the hostname at the percent-encoded section.

In context of HT'TP requests, there are further complications regarding per-
cent decoding that we will explore later on. We exploit the fact that JSON also
uses percent-encoding to encode arbitrary bytes in strings to introduce ambigu-
ities into API calls in Section [6l

Pitfall 4: TIPv6+ Address Syntax

Square brackets are only allowed in hostnames to enclose IPv6 addresses or
future IP versions. By inserting a balanced, but not matching set of brackets into
the hostname, we convince the python3 parser and the legacy NodeJS parser to
provide two different, DNS-compatible hostnames. For the example we gave in
URL 3 of Table[3] Python3 starts the hostname after the brackets, and NodeJS’s
legacy parser truncates the hostname at the brackets.

Pitfall 5: Automatic Punycode Conversion

While some parsers simply reject invalid URLs, others try to fix them. Some
of these parsers use Punycode |25] to encode arbitrary bytes in hostnames within
the syntactic bounds rules of the DNS. We found that some parsers disagreed
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on how they would perform this conversion. Example URLs 7 and 8 in Table [3]
were encoded in several different ways, depending on the parser. Example 8 is
unique among our examples in that it resolves to four different DNS-compatible
domain names depending on the parser. These problems manifested for Unicode
issues such as how to convert an arbitrary character to lowercase, or how to deal
with only half of a surrogate pair. In general, users of URL parsers would do
well to consult the Unicode Security Guide |59]. This pitfall was among those
exploited by Tsai [55].

Pitfall 6: Low ASCII Bytes

Another set of illegal octets that parsers treat differently in a UserInfo section
is the set of octets lower than any allowed character. As demonstrated by URL
6 in Table [3] allowing the ASCII newline, 0x0A, yields different interpretations.
Golang, Java, and Ruby’s parsers correctly reject URL 6 as a malformed URL.
All other parsers accept this URL, and either ignore or treat the newline byte
as part of the UserInfo with the true host being “e.gg”. However, in Perl, the
newline is ignored and the UserInfo is pre-pended to the hostname.

Pitfall 7: Illegal Extra Delimiters

Some parsers allow ambiguity by allowing prohibited extra delimiters such
as allowing an “@” in a UserInfo or multiple “#” characters. URL 4 in Table [3]is
an example of a URL with a duplicate delimiter. Many of the parsers we tested
allowed this incorrect choice. Fragments in particular were very permissive. The
pitfall was also part of Tsai’s exploit [55].

6 Misdirection Attacks with Equivocal URLs

While we have demonstrated widespread inconsistencies in URL parsing behav-
ior, we have not yet demonstrated whether these equivocal URLs represent a
pressing security concern. We now show how equivocal URLs can be weaponized
by an attacker who can anticipate the parsing libraries in use on a victim’s sys-
tem. Specifically, we demonstrate how equivocal URLs can cause false negatives
in the Google Safe Browsing and VirusTotal URL classifier services |6 [8] through
the creation of URLSs that parse to a legitimate host in the security software but
a malicious host in the victim software.

Threat Model: In this work, we consider an adversary whose goal is to cause
a victim program to fetch a malicious resource by making it appear to a URL
classifier as if the URL came from a trusted domain. The adversary can take
advantage of differences in URL parsing behavior between the victim program
and the URL classifier protecting it. In this example, the victim uses classifiers
provided by VirusTotal (VT) [8] and Google Safe Browsing (GSB) [6] to evaluate
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URLs before requesting a resource using a URL. We consider both the Web
interfaces and API endpoints of these classifiers, which do not behave identically.

6.1 Responsible Disclosure

We informed both services of these ambiguities in October of 2021. Unfortu-
nately, we have not received any response beyond a request to forward our re-
port as a feedback ticket. We promptly complied with the request, but these
ambiguities persist in these systems.

6.2 Equivocal URLs vs Google Safe Browsing

To demonstrate equivocal URLs’ ability to cause a false negative, we first need
a known-malicious URL from GSB to prove equivocal URLs can have this real-
world effect. Fortunately, GSB has a test vector URL which is always flagged as
malware “https://malware.testing.google.test/testing/malware/*". By
leveraging Pitfall 3 (over-eager percent decoding), we are first able to craft an
equivocal URL that convinces the GSB API to classifier a URL as clean even
though it parses to the test vector when loaded in a browser. Consider the
following equivocal URL, remembering that %2F encodes an ASCII forward
slash:

http://letsencrypt.org),2F@malware.testing.google.test/testing/malware/*

GSB’s API passes URLs in JSON. JSON’s specification allows percent-encoding
bytes in strings. Therefore, when this URL arrives at GSB, GSB has no way of
knowing whether the %2F is intended as a literal delimiter, or a percent-encoded
portion of the UserInfo. GSB chooses the former, and reports this URL is clean
in both its web interface and API. However, this syntactically valid URL will
lead the other clients we tested to target malware.testing.google.test. We also
discovered that this API performs the same “backslash correction” as browsers.
Interestingly, a percent-encoded backslash (%5C) in the UserInfo will be de-
coded and then trigger backslash correction in the API. As an example of this
backslash correction, the following URL is also declared safe by GSB’s API:

http://letsencrypt.org/5Clmalware.testing.google.test/testing/malware/*

However, the Web interface does not have this eager percent decoding func-
tionality nor backslash correction. But, knowing this behavior we can craft an
equivocal URL which the Web interface declares safe, but would send a browser
to the malware test vector. Because the Web interface fails to account for the
pitfall we called “backslash correction” in browsers, it evaluates the benign host
while a browser would fetch the malware:

https://malware.testing.google.test\testing\malware\*Qletsencrypt.org

The fractured landscape of parsers creates a dilemma for security systems like
GSB. No matter how GSB parses an equivocal URL, there exist other parsers
that would extract a different hostname. We present some potential mitigation
strategies in Section
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6.3 Misdirecting VirusTotal

Using a similar approach, we are also able to create an equivocal URL that fools
VirusTotal’s URL scanning web endpoint and API. For the benign domain, we
again used “letsencrypt.org”. For a malicious domain, we referenced urlHaus’s
public list of online URLs serving malware [5]. The URL we selected served
malware flagged by fifteen of VirusTotal’s 90 constituent scanners.

Inputs to VirusTotal’s API are form-encoded in a post request, and thus
similar ambiguity exists for their endpoint as to whether or not percent-encoded
delimiters should be reconstituted. We take advantage of this to create a URL
that uses “overeager percent decoding” to cause VirusTotal to report our mali-
cious URL as totally clean. The following URL is a false negative for both the
Web interface and the API. The actual malicious host used has been redacted.

http://letsencrypt.orgl2Fdocs)2F@ [redacted] /LS.exe

In testing other equivocal URL techniques, we observed that we were able to
pacify some of the original fifteen alerting constituent classifiers. This suggests
that they each are vulnerable to equivocal URLs in their own way — depending
on the parsing or matching strategy they use to compare URLs. Adding any
Userlnfo string pacified two scanners, suggesting that this may have evaded an
internal blocklist. A third classifier was pacified if that UserInfo contained a null
byte. Three others appear to perform backslash correction. The inconsistency
among constituent classifiers when faced with a URL change is cause for concern.

7 Backwards Compatibility Constraints on Strict URL
Parsing

Blindly mandating strict parser adherence to a new or existing URL parsing
standard would likely break some services. While a full measurement of what
services would be impacted by stricter URL parsing at Web scale would require
its own paper, we can give some preliminary estimations here for the upper
bound of the impact. We do this by repurposing several public data sources
to learn how often services’ URLs use non-ASCII characters. Ecosystem-wide
standardization of URL parsing would affect some fraction of these services,
making them an approximate upper bound on the potential impact.

We first find the prevalence of Punycode enabling non-ASCII characters in
domain names. Among the Alexa Top Million [1] list, 0.16% (1,606) of domains
use Punycode [25] to encode non-ASCII hostnames. Of the 7.8 billion TLS cer-
tificates available in Censys’s database [27], 0.41% (32,342,256) use Punycode in
their subject or alternative domain names.

We also surveyed ~350 million URLs sampled uniformly and randomly from
the approximately 3 billion URLs in Common Crawl’s January 2022 URL In-
dex [35]. Of these URLSs, 0.04% contained unicode characters that were left to the
client to parse when making an HTTP(S) request. By contrast, 9.95% of these
URLs had escaped their problematic bytes themselves with percent-encoding.
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These Web applications, it seems, have elected to perform percent encoding for
themselves. Perhaps these applications have an understanding of the compati-
bility risks of relying on an arbitrary client’s URL parser.

While the overall percentage of services that would be affected by unified
parsing standardization appears to be low, this still implicates a large number
of services at Web scale. At the same time, it preliminarily appears that a path
forward to consistent URL parsing standard is possible with minimal impact on
existing services.

8 Discussion

In the space of URL parsing, we have become too liberal in what we are willing
to accept. Jon Postel’s “Robustness Principle” |[47] promotes compatibility at the
expense of correctness. In this case, the cost of compatibility also gives rise to
concerns of security and authenticity on the Web. In fact, as noted in an 2018
IETF draft |53|, Jon Postel wrote his famous remark on conservative sending
and liberal receiving immediately following this sentence:

“While the goal of this specification is to be explicit about the protocol
there is the possibility of differing interpretations [47].”

Perhaps to call these departures from URLs’ specification “differing inter-
pretations” is too generous, but the fact remains that the today’s ecosystem of
URL parsers is in broad disagreement with itself. Standardizing the myriad URL
parsing libraries, which are baked into nearly every piece of network software,
would be a massive undertaking requiring the cooperation of many stakeholders.
Such uniformity might not be backwards compatible. Certainly, efforts like the
WHATWG’s URL living standard are evidence of a desire to eventually cor-
rect URL ambiguity. However, even this formidable consortium of leading Web
browser creators has not brought uniformity.

We note that some parsers even document the risks of yielding different
results than other parsers. The documentation of PHP’s parse wurl function
includes the following warning:

“Caution This function may not give correct results for relative or in-
valid URLs, and the results may not even match common behavior of
HTTP clients.”|2]

The documentation then proceeds to explain a method to enforce stricter pars-
ing, which we made use of, meaning that the default behavior is even more
permissive than what we report. A developer who did not read the documenta-
tion would be unaware of these edge-cases.

8.1 Mitigation

Individual parsers are limited in their ability to correct these systemic inconsis-
tencies alone. Some already include optional flags to perform stricter parsing.
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However, they should collectively choose to create or follow a common parsing
algorithm such as the regularly updated, “living” WHATWG standard [4]. Such
changes would technically be breaking compatibility for downstream Web soft-
ware. However, our initial investigation in Section [7] suggests that the services
depending on the particulars of these edge-case parsing implementations may be
uncommon.

For the present, we recommend that security tools analyzing URLs take note
of the potential ambiguity that exists between their filter’s URL parsers and the
URL parsers of clients they protect. Ultimately, we hope URL parser implemen-
tations will unite around an updated URL standardization that is acceptable to
all. In the meantime, one possible avenue of protection would be to apply a strict
interpretation of RFC 3986’s grammar [20], and fail closed. Another would be to
align URL classifiers with the classifiers they intend most often to protect. For
example, Google Safe Browsing’s main purpose is to flag Web sites unsafe to visit
in a browser, and could benefit from aligning its parser with the WHATWG’s
parser. A third option would be to create a multi-parser to simultaneously parse
equivocal URLs in various ways, allowing a URL classifier to check each potential
interpretation.

8.2 Limitations and Future Work

This work does not test all extant URL parsers, nor does it exhaustively ex-
ercise every code path within each parser to find every inconsistency. Rather,
we demonstrate the existence of parsing ambiguity across a variety of parsers
and demonstrate how that ambiguity can be used to obscure a URL’s destina-
tion. Given the level of inconsistency we observed, we are confident that further
testing would only magnify the extent of disagreements between URL parsers.

Future work may expand this set of URL parsing pitfalls and their effects on
more systems. Likewise the parsing and filtering behaviors of popular antivirus
and middleboxes should be checked for blind spots where equivocal URLs are
concerned. Deeper measurement should be done to design a consistent standard
that all parsers could adopt with minimal impact to existing services.

9 Conclusion

Given the fragmented implementation space of URL parsers, we warn that pars-
ing inconsistencies among mainstream URL parsers continues to be an active at-
tack vector. Because of the ubiquity of Web connectivity in modern applications,
developers would do well to be aware of and plan for URL parser discrepancies
until uniformity is achieved.
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Appendix A: Tested Parser Details
Parser Name Version | Language |Category |Parser Input Type
Type Coercion
Applied
RFC 3986 - Python |Control bytes none
3.8.10
WHATWG Ref- - NodeJS |Control JS Buffer none
erence Parser 10.19.0
Python3 urllib - Python |Built-In bytes none
3.8.10 Libraries
parse_url  with - PHP 7.4.3 |Built-In PHP string none
filter var() Libraries
NodeJS Legacy - NodeJS |Built-In JS String none
10.19.0 |Libraries
Java.Net.URI - openjdk |Built-In Java String UTF-8
17.0.1 Libraries decoding
Ruby uri 0.10.0 ruby Built-In Ruby String none
2.7.0p0 |Libraries
Golang net/url - Golang  |Built-In golang-string none
1.13.8 Libraries
libcurl4 7.68.0 C Unix Tools |char* none
wget 1.21 C Unix Tools |char* none
perl URI - Perl 5.30.0 |Unix Tools |perl-string none
Apache Portable| httpd- C/C++ |Open Source|char* none
Runtime 2.4.48 Parsers
NGINX 1.20.0 C Open Source|char* & length none
Parsers
fURL 2.1.3 Python |Open Source|Python3 UTF-8
3.8.10 |Parsers string decoding
Golang dcd04£6 Golang |Open Source|golang-string none
goware /urlx 1.13.8  |Parsers

Table 4: Parsers Tested

We tested our URLs in these 15 URL parsers. While most parsing libraries
accepted input types containing arbitrary bytes, Java’s URL parser and the f{URL
parser both required the sequence of bytes to be converted to a string type. We
followed Python3’s default behavior to throw an error upon encountering bytes

it cannot decode with UTF-8, and Java’s default behavior to replace bytes not

valid in UTF-8 with marker character OxEFBFBD. Where larger systems like
NGINX are listed, we extracted URL parsing functionality from source code.
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