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Abstract—Academic research on provenance analysis is pri-
marily based on high-fidelity event streams captured on Lin-
ux/Unix devices (e.g., Linux Audit). Unfortunately, provenance
tracing becomes much more complicated on Windows, where
microkernel design principles lead to far noisier provenance
graphs. These complications further compound when analyzing
the efficient, low-fidelity event streams generated by commercial
Endpoint Detection & Response products.

Fortunately, provenance tracing is still possible in spite of
these obstacles. We first present a method of recovering whole-
system provenance from commercial EDR telemetry. This graph
conservatively models all possible information flows, but is even
less precise than traditional whole-system provenance graphs —
that is, there is more dependency explosion, or false provenance.
We go on to present four heuristics that allow us to denoise the
provenance graph under realistic threat investigation scenarios.
The first two heuristics are process-centric, leveraging domain
knowledge of Windows service control flow patterns to mitigate
the dependency explosion caused by Windows IPC. The second
two heuristics are data-centric, intended to cluster and denoise
data accesses on Windows where accesses to environmental
configuration data (i.e., Registry keys) are auditable events. In
evaluations based on the MITRE Enginuity simulation of the
Carbanak APT, we demonstrate that these heuristics reduce
graph complexity by up to 98% as compared to a baseline tracing
algorithm. These tracing strategies enable further research into
provenance integrations for EDR, moving the community towards
a more realistic and relevant deployment model.

I. INTRODUCTION

Research into security applications for data provenance
have led to breakthroughs in intrusion detection (e.g., [2],
[8], [17], [36]) and threat investigation (e.g., [1], [25], [35]).
These encouraging results suggest the potential for provenance
analysis to fundamentally transform the future of “reactive
security” [19] in Security Operations Centers. However, there
remain threats to the validity and generality of these techniques
that the academic community has not sufficiently explored.
Among these, one concern is replicating results on the kind
of event telemetry that is available in enterprise environments,

“Equal contribution.

Workshop on Attack Provenance, Reasoning, and Investigation for Security
in the Monitored Environment (PRISM) 2026

23 February 2026, San Diego, CA, USA

ISBN 978-1-970672-00-8

https://dx.doi.org/10.14722/prism.2026.23012
http://www.ndss-symposium.org

Saurav Chittal
Purdue University
schittal @purdue.edu

i.e., Endpoint Detection & Response (EDR) telemetry. Surpris-

ingly, another threat is the Windows operating system. When

our research group began to experiment with EDR telemetry
and evaluate on Windows datasets, the precision and accuracy
of our analyses quickly deteriorated.

Nearly all of the provenance security literature builds on
system call audit logs — Linux Audit, Event Tracing for
Windows, and the like — that are configured to be extremely
voluminous and capture a record of every information flow.
While the availability of commodity audit frameworks has
been a boon to systems auditing research, including data
provenance, in practice organizations do not directly record,
analyze, and retain system call (syscall) logs. Instead, EDR
sensors act as an intermediary, generating a more compact and
efficient event telemetry stream by tapping into syscall logs as
well as other system data. EDR logs are commonly generated
and retained in enterprise environments, but the suitability of
these logs for provenance analysis is underexplored. To the
best of our knowledge, Hassan et al.’s RapSheet system is
the only provenance application demonstrated to be effective
on EDR telemetry [9], but the intricacies of conducting prove-
nance on EDR telemetry are not explored in this work. Further,
RapSheet demonstrates the feasibility of single provenance
method (forward tracing) for a single application (alert triage);
we show how additional challenges emerge when attempting
to port the entire provenance toolkit to EDR telemetry.

While not exclusively, prior work on provenance analysis
has also heavily focused on *nix systems such as Linux or
FreeBSD. With Windows running on 70% of workstations
as of May 2025 [31], compared to Linux’s 4%, Windows
is clearly important to consider for any practical application.
Given the evolution of operating systems and the strong
similarity in system abstractions — processes, files, sockets,
etc. — it seems natural that provenance analysis should more
or less work “out of the box” without requiring major method-
ological changes. Indeed, while fundamental principles of data
provenance still apply to Windows subtle design details pose
unique complications for provenance analysis. Specifically, we
encounter two key challenges when conducting provenance
analysis on Windows:

1) Windows Inter-Process Communication (IPC). Unlike
the monolithic Linux kernel, the Windows NT kernel is a
hybrid architecture that borrows heavily from microkernel
design principles [30]. Core features like scheduling and



interrupts are handled in the kernel, with other functionality
delegated to user space system services. As a result, OS
interactions that appear as “invisible” traps to the kernel
in Linux become auditable events on Windows, combining
with other IPC to generate significantly more dependency
explosion and false provenance.

2) Windows Data Access Patterns. In Linux, environment
and configuration variables are mapped into process mem-
ory and become mostly “invisible,” internal process state
that is represented by the process vertex. On Windows,
accesses to environment and configuration variables are
auditable events to the Windows registry. To make mat-
ters worse, Windows data paths appear to contain signifi-
cantly more non-deterministic content, either truly random
(UUID’s, hashes) or structured data (SIDs). While this does
not result in false provenance, it does cause dependency ex-
plosion, adding visual noise and increasing the complexity
of learning generalizable models of system behaviors.

In this work, we demonstrate that foundational provenance
methods like forward and backward tracing remain feasible
on Windows EDR telemetry. We show that it is possible to
reproduce a conservative approximation of a whole-system
provenance graph generated from syscall logs, but with re-
duced information flow precision. For example, in an attack
investigation scenario using EDR telemetry, we produce a
concise attack graph on a Linux server (CARBANAKYV2, fs)
comprised of 33 vertices and 53 edges, while the same attack
campaign on a Windows server (CARBANAKYV2, dc) contains
3173 vertices and 6360 edges. While unacceptably large, this
result establishes the basic feasibility of provenance analysis
on Windows EDR telemetry, as bi-directional information flow
connectivity was consistently maintained between the attack’s
root causes and impacts.

To bring the complexity of the Windows attack graphs
down to a more manageable level, we begin to consider how
domain knowledge of Windows’ design could be instantiated
as heuristics that prune false provenance and dependency
explosion. We first show that the event-driven nature of most
Windows system services make them candidates for execution
partitioning, highlighting both inter-process and intra-process
opportunities for pruning false information flows during graph
traversal. We continue by deduplicating Windows’ explosive
data access patterns. We train a Doc2Vec-based clustering
model group semantically-related data entities together. We
also observe that “leaf” data entities can be merged into their
parent process without impacting threat investigation results.

These insights are built on a sophisticated attack engage-
ment, CARBANAKV2, conducted over the span of 3 weeks
in our research group. Decomposing the attack campaign by
device into 6 discrete attack chains, we demonstrate that our
domain knowledge heuristics are able to reduce the complex-
ity of Windows EDR graphs by 91%-98%. While further
refinement is required, our results combine to demonstrate
the feasibility of conducting provenance analysis on EDR
telemetry. Our filtering heuristics and datasets, which we look
forward to open sourcing upon publication, will facilitate

TABLE I: A comparison of system call event fidelity to
representative EDR telemetry, Carbon Black Cloud XDR vl.1.
“Special” indicates an enriched EDR event hook that does not
correspond to an individual system call.

Entity System Event  Information Flow = EDR Event
File Open Process<+File filemod
File Read/Write Process<>File —

File Special Process<+File moduleload
File Special Process<—File scriptload
File Close End of Flow —

Registry Read/Write Process<>Key regmod
Socket Open Process<>Network  netconn
Socket Send/Recv Process<+Network — —

Socket Close End of Flow —

Process Fork/Exec Process—Process  procstart
Process IPC Process<»Process crossproc
Process Special — fileless_scriptload
Process Exit/Kill End of Flow procend

future research into provenance analysis in the more realistic
deployment scenario of EDR integration.

II. BACKGROUND
A. Endpoint Detection & Response Telemetry

At first glance, EDR sensors appear to generate highly sim-
ilar telemetry to common system call auditing configurations
in Linux Audit and Event Tracing for Windows. In Table I,
we compare the Carbon Black Cloud XDR’s event schema to
a standard system call logging configuration. While both event
streams capture the occurrence of process activities and data
accesses, subtle differences result in concerning implications
for provenance analysis:

« No I/O Events. EDR schemas mark the start of a data
flow, but not record individual read/write events. This
makes EDR telemetry much more space efficient than the
common system call logging configuration used in the
literature. It also means that prior work that leveraged
interleaved I/O events to improve resource utilization
(e.g., [11], [14], [33]) or improve attack reconstruction
(e.g., [5], [10], [24]) is not applicable.

« No Stop Events. The only stop event that can be found in
the EDR stream is for processes, not data flows. Provided
that the process(es) are still alive, this means that it is not
possible to infer the end of data flows from EDR logs.

With the benefit of hindsight, it becomes clear that the
EDR event schema is highly optimized to support EDR’s
rule/heuristic-based detection model. In this model, detection
analytics will at most test for the occurrence of a data access,
not its frequency, volume, or ordering of occurrence relative
to other accesses.! It is thus an unnatural fit for provenance-
based information flow analysis, yet provenance must be made
to work on EDR event telemetry in order to successfully
transition to practice.

'We also note in Table I the presence of other EDR events that do not map
cleanly to system call events. Notably, EDR’s often log the entire contents of
script accesses to the event stream. It is common practice to build detection
analytics that match against script contents.



While we have less visibility into other commercial
products, Carbon Black XDR’s event schema appears
similar to several other products. For example, Carbon
Black’s filemod event serves a similar role as Sen-
tinelOne’s FileSystemActivity event and Microsoft
Defender’s ObjectAccess event. We note, however, that
other products’ event schemas can vary dramatically, and
may pose even greater challenges for provenance analysis.
For example, CrowdStrike employs 58 specialized events
of the form *FileWritten (e.g., ELFFileWritten,
PDFFileWritten), but does not appear to have a corre-
sponding read event for files or registry keys [3]. We thus
suspect that Carbon Black’s schema represents a (realistic)
best case scenario for provenance, although analysis may still
be possible in Crowdstrike via the process tree.

B. CARBANAKvV2 Dataset

Our methods and results are based primarily on an attack
engagement dataset generated over a period of three weeks
from April 19, 2024 to May 10, 2024. All hosts were
instrumented with the Carbon Black Cloud XDR endpoint
sensor and Wireshark. The testbed was comprised of four
Windows 10 workstations operated by 4 graduate students as
their primary workstations throughout the engagement (hl-
h4). The testbed also included a CentOS 7 Linux fileserver
(f£s), which all machines periodically connected to transmit
packet capture logs, and a Windows 10 Server AD domain
controller (dc) which authenticated each workstation’s domain
accounts and served as a DNS server and relay.

The first week and a half was reserved for benign operation
of all machines. Starting on April 30, an additional student
initiated an attack campaign based on MITRE Center for
Threat-Informed Defense’s simulation of the Carbanak APT.
[6], While the original Carbanak emulation involved one
workstation, one fileserver, and one domain controller, we
extended the attack chain to provide a richer evaluation dataset
for lateral movement and dwell time. The attacker initially
compromises hl (Apr 30), spreads to fs in order to gain
access to the dc (May 2), before proceeding to the other hosts
on May 7, May 9, and May 10, respectively. The operators
of “victim” workstations continued to use the machine as
normal throughout the duration of the attack, providing rich
naturalistic background activity for future evaluations.

III. RECOVERING WHOLE-SYSTEM PROVENANCE FROM
EDR TELEMETRY

The good news is that we can use EDR telemetry to
approximate the whole-system provenance graph. The EDR
graph will overestimate information flows, but will not omit
any information flows that would be present in the whole-
system graph. For a data access event < s,d,r,t > where s
and d are vertices representing system entities, r is the event
type, and ¢ is the event timestamp, we create an edge s—d
with attributes {type=r, time=[t,00]}. During graph
traversal, any forward trace from time > ¢ must traverse the
edge, and any backward trace from time < co must traverse

the edge. This extremely permissive time bracket reflects the
possibility that a data access event (e.g., filemod) at time
t reflects the possibility that an information flow could occur
at any point in the future so long as the associate process(es)
is still alive. If either s or d are associated with a procend
event at time wu, then and only then are we able to update the
edge’s time bracket to [t, u].

To demonstrate the implications of this change, Figure 1
provides a comparison of provenance graphs generated by
system call and EDR event streams. Fig. la provides the
ground truth of a simple event sequence, which can be used to
generate the whole-system provenance graph found in Fig. 1b.
From this graph, it is clear that P, is not causally dependent
on Fj. Fig. 1c shows how the same event sequence appears
in EDR telemetry. From this graph, we must assume that P,
is causally dependent on Fj, but this is false provenance as
no such information flow occurred on the system. As whole-
system provenance is already prone to dependency explosion
[21] due to the known semantic gap between system call logs
and and intra-process control flow, the exacerbation of false
provenance by EDR logs warrants careful consideration.

We identified the need for this tracing approach through trial
and error while working the ATLASv2 dataset [29], which
also contains Carbon Black Cloud XDR telemetry. When
attempting to forward trace the attacks from their root cause(s),
we typically found success using a naive tracing algorithm, i.e.,
the edge s—d was associated with the instantaneous times-
tamp t. However, backward tracing an attack from its impact(s)
was unsuccessful because the naive tracing algorithm was
unable to identify true causal dependencies. Delving deeper,
we soon realized that each data access event implied that the
access may continue to occur in perpetuity.

We also note that the transition to EDR event telemetry
will pose additional problems for streaming systems that are
popular for anomaly detection (e.g., [2], [27]. In streaming
processing of chronologically-ordered events/edges, it is not
possible to specify start and end timestamps as this violates
the chronological ordering. An alternative scheme that would
permit streaming processing would be to insert additional
“virtual” edges into the stream when the possibility of an un-
documented information flow is detected. This would require
maintaining state about the active files associated with each
process, and vice versa, adding additional processing costs to
the streaming application.

IV. MITIGATING WINDOWS PROCESS DEPENDENCIES

While the imprecision of the EDR graph may cause prob-
lems for Linux devices, provenance tracing on Windows
devices is an outright disaster. In contrast to the fully mono-
lithic design of the mainline Linux kernel, Windows (NT)
kernel adopts a hybrid architecture that borrows heavily from
microkernel design principles. Specifically, Windows does not
provide a single uniform API for directly interacting with the
kernel (e.g., POSIX), instead exposing a range of operating
system services that run as programs in user space. By virtue
of running as user space programs, these operating system



1 P_1 open(rw) F_a
2 P_1 write F_a @
3 P_1 open(rw) F_b @
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(a) System Call Log
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(b) Whole-system Provenance Graph

(c) EDR Log
(d) EDR Provenance Graph.

Fig. 1: A simplified comparison of whole-system and EDR provenance analysis demonstrating the increased potential for false
provenance using EDR telemetry. Line numbers in la and lc are used as Lamport timestamps in 1b and 1d, respectively.
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Fig. 2: A comparison of process-to-process connectivity (Node
Degree) on Linux (fs) and Windows 10 (dc, h1-h4) in
CARBANAKV2. Windows devices have a long tail of highly
connected services processes that exacerbate the dependency
explosion of provenance analysis.

services are all auditable. On Linux devices, the kernel is
effectively invisible in the provenance graph, i.e., we do not
consider a value returned from kernel space to be causally
dependent on every previous argument sent to kernel space.’
But on Windows, interactions with the operating system are
audited as inter-process events rather than traps to the kernel,
meaning that a standard provenance tracing approach would
presume causal links between these completely unrelated ac-
tivities. This problem is not unique to EDR logs, but becomes
disastrous when the two sources of imprecision are combined.

As an attempt to quantify this problem, Figure 2 compares
the process-to-process connectivity of Windows hosts and the
Linux host in the CARBANAKV2 dataset. We observe that
Windows hosts exhibit a pronounced long tail of highly con-
nected processes, where a small number of processes demon-
strate extremely high fan-out, while the majority interact with
only a handful of peers. In contrast, the Linux host contains
fewer high-degree processes and a markedly less extreme

2Support for this argument — a lesser known observation from Xu et al.’s
seminal work [33] is that accesses to virtual files exposed by the kernel do not
represent true information flows and should thus be filtered from the graph.

tail. For example, a single instance of svchost.exe, a
benign Windows service host process, is connected to over
1,900 processes. Whereas the highest-degree Linux process
is connected to only 507 processes. Moreover, the top 10
Windows processes collectively connect to over 13,000 other
processes, whereas the top 10 Linux processes connect to
fewer than 600. These trends can also be observed in the
DARPA Transparent Computing datasets, shown in Figure 11
in the appendix. Thus, while provenance tracing on nix devices
also has its problems, it would be beneficial if we could make
our Windows provenance tracing more like Linux provenance
tracing!

A. Inter-Process Filtering Heuristic

As long-lived server processes, it is unsurprising that Win-
dows operating system services are major contributors to
dependency explosion [12], [13], [21], [26]. Our first obser-
vation is that, regardless of running as user space processes,
interprocess communication with these services can still be
handled as communication with the operating system. That
is, messages sent by a Windows service are often completely
causally independent of prior messages sent to the Windows
service. With sufficient confidence that each IPC session with
a particular Windows service is causally independent of other
sessions, it is no longer necessary to model these events at
all. Instead, we can define a domain knowledge constraint [33]
that filters all events associated with that service, treating them
instead as “invisible” interactions with the operating system.

While Windows has many system services, there exist a
finite set on the order of several hundred. Rather than develop
a generic approach to modeling these services, we instead
manually verified each service. Specifically, we calculated the
inter-process connectivity (crossproc) of every process in
our dataset, then sorted in descending order. We then removed
any process’ whose images did not reside in a trusted operating
system directory (e.g., c: \windows\system32\). Next, we
reviewed Windows documentation to learn about the API and
behavior of the service. The service was added to our filter
list if they met the following requirements: (#1) distinct IPC
sessions with the service are causally independent on one
another, and (#2) an IPC session with the service cannot
result in an information flow with other data entities. An
example of a service that met this criteria is the Windows
Defender Antivirus engine (msmpeng.exe), which engages



in IPC with every process. On the other hand, the network
service (msedge.exe) did not meet this criteria because it
acts as an intermediary on all network connections, violating
Requirement #2 by establishing an information flow with the
network socket. At present, we have used this procedure to
identify 80 services whose events can be safely filtered for
the purposes of provenance analysis.

B. Intra-Process Filtering Heuristic

Several essential system services acted as an intermedi-
ary in information flows (violating Requirement #2) even
though each inter-process connection to the service was
causally independent (satisfying Requirement #1). In addition
to msedge.exe, other services matching this description in-
clude the file explorer (explorer.exe) and Local Security
Authority Subsystem Service (1sass.exe). In these cases,
traditional execution partitioning can be used to subdivide
long-lived service processes into autonomous execution units,
eliminating the threat of dependency explosion. One possibil-
ity would be to apply Ma et al.’s instrumentation-free approach
to execution partitioning based on profiling event logs [26], but
inferring execution units from EDR logs would be difficult due
to their imprecision.

Instead, we leverage a much simpler heuristic — causally-
linked inputs and outputs to a system service exhibit strong
temporal locality. In the absence of concurrency or preemption,
following the immediate next edge would be sufficient for pro-
grams like msedge.exe and explorer.exe. To account
for these effects, we simply define a small time interval A and
follow all edges within time ¢ + A depending on whether the
traversal is forwards or backwards. For our datasets, we found
that using a A of 2 seconds maintained graph connectivity
in attack investigations while mitigating the false provenance
incurred by these services.

C. Security Analysis

While less technically satisfying than prior work on execu-
tion partitioning [21], our approaches adopt the same threat
model. All execution partitioning assumes the integrity of the
program being partitioned; if the program is compromised,
the attacker could manipulate the control flow of the program
to manipulate the contents of the log [34]. Similarly, an
attacker that is able to exploit one of the operating system
services would be able to engage in activities that violate our
assumptions about that services’ behaviors. Thus, in spite of
their simplicity, our heuristics do not expand the attack surface
of established methods in provenance analysis.

V. MITIGATING WINDOWS DATA DEPENDENCIES

In addition to providing auditable interactions with the
operation system through user space services, Windows also
audits accesses to environmental/configuration data for each
program. While environment variables are also passed in
memory from parent to child processes, as in Linux, individual
configuration fields are persisted as auditable key-value pairs
in the Windows registry and are regularly accessed when
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Fig. 3: A comparison of process-to-data connectivity (Node
Degree) on Linux (fs) and Windows 10 (dc, h1-h4) in
CARBANAKV?2.

creating new processes. As a result, Windows presents another
novel dependency explosion problem in which each process is
connected to orders of magnitude more data objects as shown
in Figure 3. In CARBANAKV2, the most data-connected Win-
dows process is linked to over 290,000 data objects, whereas
the most connected Linux process is linked to fewer than
8,000. Moreover, the median Windows process is connected
to 7 data objects, while the median Linux process is connected
to none. Most of this data connectivity does not convey inter-
process information flow, and is thus less likely to frustrate
the results of provenance-based threat investigations. That said,
this high degree of data connectivity greatly complicates graph
visualization.

Additionally, Windows data paths, including both files
and registry keys, seem to more frequently contain non-
deterministic path segments, such as Security IDs (SIDs) or
hashes, as compared to Linux. For simplicity, we will refer to
these non-language components as “random.” Due to the high
degree of random segments in data paths, the high degree
of data connectivity may also cause problems for learning
algorithms attempting to create a general model of system
activity (e.g., anomaly detection).

To mitigate this problem, our high-level intuition is once
again to make Windows analysis more like Linux. On Linux,
the opacity of environmental and configuration data was not
generally a problem for threat investigation;® these values
were thought of as an extension of the internal process
state. Further, graph visualization and process modeling would
greatly benefit from reducing the overall number of data
connections, which we can achieve by clustering related data
objects together.

3Except in the case of configuration-based attacks [16]!



TABLE II: Automated reduction of unique random compo-
nents in Windows data object paths. The KL divergence filter
removes the majority of random components, while the 4-gram
model further reduces the remaining components by 9.8% of
what the KL divergence filter misses.

Filter # Components % Reduction
None 967174 0.0
KL Divergence 217581 71.5
4-gram 650567 32.7
Both 196225 79.7

A. Clustering Data Entities Heuristic

Our first approach is to simply merge semantically-related
data entities into a single vertex to reduce graph complexity.

1) Masking Non-Deterministic Path Segments: The first
step in our procedure is to replace path segments that are
non-deterministic (or, expected to vary between devices) with
static pseudonyms. As noted above, some of the “random”
components are actually structured data, such as Windows
Security Identifiers (SIDs) [28] or UUIDs [4], that we easily
identify with regular expressions.

We identify the remaining non-determism in path segments
— including segment substrings — using a combination of
character entropy and a 4-gram model. We use a basic relative
entropy scheme where we compute the total distribution p of
all characters in the components, then rank each component’s
distribution g based on the Kullback-Leibler (KL) divergence
from the total distribution [18]:

_ p(c)
Dir(p.g) =Y ple)In == ¢))

- q(c)
The KL divergence measures how similar a specific compo-
nent’s characters are to the generally expected distribution of
characters in path components; thus, we expect D, (p, g.-) for
a random component g, to be larger than that of a nonrandom
component, as the random components do not fit the general
distribution of characters in natural language components.
However, the separation between random and non-random
components is somewhat weak: it is possible for a random
component to randomly contain characters that seem plausible,
as there is no consideration of the order of the characters. To
avoid removing real components, we only filter components
above a conservative threshold at which all the components

clearly appear to be random.

The KL divergence is able to separate out the vast majority
of random components, but permits some random components
with lower relative entropies that are not filtered out. To
catch these remaining components, we found success using
a pretrained 4-gram model designed to separate programming
identifiers from random characters, as path components are of-
ten structured similarly [15]. The 4-gram model’s limitations,
such as being unable to handle short strings of 6 characters
or less, are covered by the KL divergence model, while
it successfully further identifies random components missed
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Fig. 4: Cluster metrics versus number of clusters for our path
embedding clusters. The solid lines track the mean values with
error bars for the standard deviations, while the dotted lines
show the minimum and maximum values. Overall, we see that
the cluster radii level off very early, while the path distance
also quickly levels off by around 10000 clusters.

by the KL divergence filter. Table II shows the reduction
performance of these filters on all unique components in
our datasets. As expected, the KL divergence filter removes
the majority of the random components, achieving a 77.5%
reduction on its own, but the 4-gram model is able to further
remove some components that happen to appear non-random,
reducing 9.8% of what the KL divergence filter missed, for
a total reduction of 79.7% of random components being
automatically removed. All segments (or segment substrings)
identified as non-deterministic are replaced special tokens,
e.g., a UUID is replaced with UUID and random components
are replaced with RND. Vertices whose data paths are identical
matches after this procedure are trivially merged.

2) Clustering Related Data Paths: We continue by clus-
tering data entities with non-identical paths, using the path
hierarchy as a cue for identifying semantically-related data
entities. To achieve this, we train a clustering model on data
path embeddings. Data entities whose path fall into the same
cluster are merged into a single vertex, using the data path
closest to the centroid of the cluster as a vertex label. Data
entities that do not fall within a cluster are unchanged.

To cluster the data objects, we first train an embedding
model for data paths. Each path converted to lowercase and
then decomposed into a sequence of tokens by splitting on all
punctuation, including both ‘\” (the Windows path separator)
and other symbols such as underscores or periods. We split on
punctuation beyond just the path separator as Windows names
often contain long combinations of multiple components. The
sequences are then embedded into vectors using Doc2Vec [20]

We use k-means clustering due to the volume of data paths
(around 4 million in our dataset) and expectation that the
number of clusters will be relatively large. While we aim to
reduce the number of graph nodes by grouping similar paths
together, it is better to err conservatively rather than grouping
together unrelated data paths. To optimize the number of
clusters, we create a path distance metric by splitting each
path into directories and the final object name. At each level
in the path, we calculate the entropy of the distribution of



names at that level:

HU) = _Zp(nvl) lnp(n,l) 2

where p(n,l) is the frequency of name n at a level [ in the
path divided by the total number of names at level [. We then
define the total path distance of a cluster to be the sum of
these entropies at every level.

We choose the smallest number of clusters that simultane-
ously achieves a reasonably low path distance. Figure 4 shows
our results for both this path distance and the mean radius
of each cluster in embedding space, defined as the average
distance of each path embedding to the cluster centroid. The
path distance per cluster levels off fairly quickly, so for our
data, we use 10000 as our number of clusters.
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Fig. 5: Box and whisker plot comparisons of Euclidean
embedding distance between related data paths in ATLASv2
Host 1. Fig. 5a reports distance between a data object and its
Parent directory, all Non-Parent directories, Neighboring data
in the same parent directory, and all Non-Neighboring data.
Fig. 5b reports distances between data objects with the same
name that reside in different directories.

While embedding-based featurization of data paths is a
nearly universal practice in provenance-based machine learn-
ing applications (e.g., [7], [8], [17], [32], [36]), we are not
aware of any ablation study that specifically reports how well
the resulting model encodes path hierarchies. A high-level
characterization can be found in Figure 5. Figure 5a compares

related data objects while controlling for path length, with
shorter path lengths appearing much more commonly in the
evaluation dataset. It can be seen that the euclidean distance
between neighboring data objects is consistently closer than
non-neighbors, except for longer path lengths (10+) where
training data was scarce. However, the Doc2Vec model strug-
gles to encode the relationship between a data object and
its parent directory, regardless of path length. An additional
concern is whether the model encodes similarities between
files in different directories. Figure 5b compares the distances
between files of the same name that are stored in different
directories. We see that the model is extremely effective
at placing objects with the same name, but this efficacy is
again dependent on path length. These results suggest the
opportunity for further improvement on file path embedding,
which is a common pre-processing step in provenance-based
anomaly detection systems. However, the Doc2Vec model
appears sufficient for data object deduplication, particularly
for objects in the same parent directory.

B. Pruning Leaf Data Entities Heuristic

As a large proportion of Window data accesses are to
program-specific state and configuration data, it is not sur-
prising that most of these accesses do not facilitate inter-
process information flows. That is, most data entity vertices
are “leaves” in the graph that are only accessed by a single
process. For most applications of data provenance, it is safe
to prune these leaves, treating them instead as opaque internal
process state. On a live system where the provenance graph is
dynamic and evolving, it would likely be possible to identify
single process data entities and proactively prune them from
the provenance graph. This procedure would be similar to Lee
et al.’s LogGC system, which identified and removed accesses
to program’s temporary file activities that did not convey inter-
process information flows [22]. But on a static graph — such as
the result of a forward/backward trace in a threat investigation
— it is sufficient to simply prune data entities with fewer than
two process neighbors. While not conceptually satisfying, we
find this heuristic to be extremely helpful when attempting to
visualize attack graphs or improve the learning rate of machine
learning models on limited training data.

VI. EVALUATION

We now evaluate the efficacy of these heuristics by measur-
ing how they reduce graph complexity in threat investigation
scenarios. Specifically, we use the REAPr labeling method-
ology to generate attack graphs [23]. For each host in the
CARBANAKV?2 dataset, we review the experimenter logs to
manually identify the root cause(s) and impact(s) of the attack
on each host. Root causes were always the Remote IP address
from which the attack was being launched, while Impacts were
the Remote IP addresses the attacker was moving lateral to
as well as any data artifacts left on the machine. After this
limited manual labeling step, we then used the REAPr scripts
to procedurally generate the attack chain on each host. These
scripts executed a forward trace from the identified root causes,



TABLE III: Attack graph sizes for Windows hosts when applying our dependence explosion mitigations.

Control Inter-Program (§IV-A)  Intra-Program (§IV-B) | Clustering (§V-A)  Leaf Data (§V-B) All Techniques

Device 4 |E| \4 |E| V| |E| \4 |E| V| |E| 4 |E| % Reduction

fs 33 53

dc 3173 6360 531 1013 2410 4847 | 1728 6360 574 1139 | 248 478 92.5

hl 6597 12930 | 6246 12453 6149 12041 | 2104 12930 1015 1689 159 316 97.6

h2 5755 11210 | 1463 2435 4641 6415 | 1385 11210 463 854 130 249 97.8

h3 | 24124 47793 | 4592 8846 21931 44361 | 4853 47793 4893 9932 | 527 1154 97.6

h4 6083 11258 1620 2604 5181 9880 | 2379 11258 1489 2669 | 436 999 91.1

(a) Before filtering

(b) After filtering

Fig. 6: Attack subgraph on dc before and after applying all heuristics. The filtered graph exhibits a substantial reduction in

fan-out and overall complexity.

(a) Before filtering

(b) After filtering

Fig. 7: Attack subgraph on h1l before and after applying all heuristics. The resulting graph is compact and visually isolates

attack-relevant behavior.

a backward trace from the identified impacts, then returned the
intersection of the two traces as the attack graph.

The four heuristics described above — Inter-Process Filter-
ing (§IV-A), Intra-Process Filtering (§IV-B), Clustering Data
Entities (§V-A), and Pruning Leaf Data Entities (§V-B) —
were all implemented as modifications to the REAPr graph
traversal logic that can be independently toggled on and off.
To evaluate the efficacy of the heuristics, we enabled each one
independently, then all at the same time, comparing the results
to a control graph in which no heuristics were activated. We
also present the Linux device (fs) as an additional control,
for which no heuristics were active.

Table III presents our results. While the Linux-based control
graph (fs) is comprised of just a few dozen vertices, the
smallest control graph on Windows (dc) is 100 times larger.
As these two devices were servers with roughly comparable
workloads, we can attribute this explosion of complexity to
Windows-specific behaviors

Looking at the performance of each heuristic, we see that

all heuristics reduce graph complexity, but are not sufficient
in isolation. For example, the inter-program heuristic reduces
the number of vertices of most graphs by around 70, but the
subgraphs with thousands of nodes are still too large given
the scale of the attack. However, with all heuristics applied,
most graphs begin to approach a usable size, specifically dc,
h1, and h2. Overall, the total reduction for all graphs is quite
similar. ranging from around 91% in the worst case to 98% in
the best case. The baseline graph for h3 is about 4 times larger
than the other hosts; consequently, its fully-filtered graph is
still too large to be very interpretable. We note that the attack
log for h3, which was the first host compromised after dc, was
the longest of any in the engagement due to various operational
issues that arose during the engagement. h4, and to a lesser
extent, dc, are also notable in responding less to reductions.

Figure 10 first shows the attack subgraph for the Linux host
fs. As discussed earlier, the Linux control graph is already
compact and lacks the high-degree hub structure observed on
Windows, and thus does not require additional filtering to be



(a) Before filtering

(b) After filtering

Fig. 8: Attack subgraph on h2 before and after applying all heuristics.

(a) Before filtering

(b) After filtering

Fig. 9: Attack subgraph on h4 before and after applying all heuristics. Although the filtered graph remains comparatively
dense, the reduction in complexity is substantial relative to the baseline.

Fig. 10: Attack subgraph for the Linux host fs. The graph
is already compact and does not exhibit the high-degree hub
structure observed on Windows hosts.

interpretable.

Figure 6, Figure 7, Figure 8, and Figure 9 show repre-
sentative Windows attack graphs before and after applying
all heuristics. For dc, hl and h2, the combined heuristics
produce a stark reduction in graph size and fan-out, yielding
compact attack subgraphs in which attack-relevant behavior is
visually isolated. For h4, while the fully-filtered graph remains
comparatively dense, the reduction is still substantial relative
to the baseline, and the resulting subgraph is significantly more
structured and interpretable than the unfiltered control. We
omit the before-and-after visualization for h3, as the unfiltered
attack graph was too large to be rendered by our visualization
tooling; however, quantitative results in Table III confirm that
the applied heuristics still achieve a substantial reduction for

this host. Across all cases, we verified that all attack steps
remain fully present and logically connected according to the
ground-truth attack timeline.

VII. DISCUSSION

Our experimental results underscore the feasibility of per-
forming provenance analysis on EDR telemetry. In spite of
the absence of key information flow events in the EDR event
schema, we were consistently able to trace attacks from their
root causes to their impacts (and vice versa) on EDR telemetry.
The heuristics we developed to aid in this analysis did not
break graph connectivity and reduced graph complexity by
91% to 98%. That said, the attack chains were still difficult to
visualize with all heuristics applied. We believe that simple
heuristics like the ones that appear in this work can (and
should) be refined to further improve tracing. If we hit a
ceiling on the level of reduction that is possible using domain
constraints, attack summarization systems (e.g., [1], [17], [36])
can be used to produce a usable attack explanation.

If statistical learning mechanisms will ultimately be neces-
sary to generate precise provenance graphs from EDR teleme-
try, is there a point to leveraging domain knowledge constraints
prior to deploying Machine Learning (ML)? Indeed, it would
be astonishing if ML was unable to approximate the heuristics
we propose given sufficient training data. One advantage of
domain knowledge is that we can specify a clear upper limit on
edge pruning. We bound our heuristics to programs for which
we were able to verify that an attacker would need to escalate
privilege in order to tamper with, making our heuristics more



robust to adversarial abuse. Out-of-band constraints would
need to be placed on the ML to arrive at a similar outcome, as
this domain knowledge (e.g., file permissions) is not present
in the EDR event telemetry. It is also worth noting that a
statistical mechanism would suffer from the same downsides,
i.e., an attacker that can manipulate a program’s control flow
could abuse either the domain-based or statistical mechanism.

Another reason to simultaneously pursue statistical and do-
main knowledge heuristics is to establish ground truth against
which to measure statistical mechanisms. Provenance-based
intrusion detection research has shown tremendous promise,
but these results are predicated on subjective and underdocu-
mented ground truth labeling. The REAPr project is a response
to this inconsistency [23], leveraging established provenance
analysis techniques to semi-automatically label attack data
with only limited experimenter intervention. However, when
we attempted to label the CARBANAKYV?2 dataset using the
REAPr methodology and scripts, we quickly realized that the
original procedure was designed with Linux/Unix in mind and
that far too much dependency explosion was creeping into the
attack graph on Windows EDR datasets. We developed these
heuristics as a method of adapting the REAPr methodology to
Windows EDR, providing deterministic and objective mecha-
nisms for denoising Windows information flows.

The threat model in our work builds on an assumption
that attackers cannot manipulate programs and data entities
belonging to the operating system. The attacker would need
to escalate privilege in order to manipulate the Windows
system services or data artifacts that our heuristics are built
on, at which point the entire operating system and EDR will
have already been compromised. If we were to relax our
system-only requirement, it would be possible to apply these
heuristics to other programs that generate large volumes of
false provenance. For example, the Google and Adobe update
programs both engage in tremendous volumes of inter-process
communication, both of which ended up appearing in the
attack chains of some CARBANAKYV2 devices. We believe
that further development of domain-based heuristics will be an
important part of transitioning provenance analysis to practice.

VIII. CONCLUSION

In this work we have identified the challenges of conduct-
ing provenance analysis on Endpoint Detection & Response
telemetry. We also highlighted several novel intricacies of
conducting provenance analysis on Windows devices that had
gone unreported in prior work on the Windows platform.
We go on to demonstrate that in spite of the imprecision of
Windows- and EDR-based analysis, domain-based heuristics
can be employed to bring provenance analysis more in line
with its performance on syscall-based Linux logs. It is our
hope that these findings will prompt further research on
integrations of provenance with commercial security products.
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Fig. 11: An additional comparison of process connectivity
(Node Degree) in *nix vs. Windows hosts using the DARPA
Transparent Computing Engagement 3 datasets. Cadets is
running a BSD-based Unix distribution, while FiveDirections
is a Windows device.
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