
AliDrone: Enabling Trustworthy Proof-of-Alibi for
Commercial Drone Compliance

Tianyuan Liu, Avesta Hojjati, Adam Bates and Klara Nahrstedt
Department of Computer Science

University of Illinois at Urbana-Champaign, Champaign, US
{tliu60, hojjati2, batesa, klara}@illinois.edu

Abstract—
Commercial use of Unmanned Aerial Vehicles (UAVs), or

drones, promises to revolutionize the way in which consumers
interact with retail services. However, the further adoption of
UAVs has been significantly impeded by an overwhelming public
outcry over the privacy implications of drone technology. While
lawmakers have attempted to establish standards for drone
use (e.g., No-Fly-Zones (NFZs)), at present a general technical
mechanism for policy enforcement eludes state-of-the-art drones.

In this work, we propose that Proof-of-Alibi (PoA) protocols
should serve as the basis for enforcing drone privacy compliance.
We design and implement AliDrone, a trustworthy PoA protocol
that enables individual drones to prove their compliance with
NFZs to a third party Auditor. AliDrone leverages trusted
hardware to produce cryptographically-signed GPS readings
within a secure enclave, preventing malicious drone operators
from being able to forge geo-location information. AliDrone
features an adaptive sampling algorithm that reacts to NFZ
proximity in order to minimize the processing cost. Through
laboratory benchmarks and field studies, we demonstrate that
AliDrone provides strong assurance of geo-location while im-
posing an average of 1.5% overhead on CPU utilization and
0.3% of memory consumption. AliDrone thus enables the further
proliferation of drone technology through the introduction of a
trustworthy and accountable compliance mechanism.

Index Terms—Drone, GPS Forgery Attack, Privacy, TrustZone

I. INTRODUCTION

The Unmanned Aerial Vehicles (UAVs) technology, also
known as “drones”, enables many promising applications.
Besides military purpose, many businesses are paying more
attention on the commercial usage of drones. For example,
Amazon announced its Air Prime Delivery Service [1] in
2013, aiming to deploy small drones to deliver lightweight
packages. The expected delivery time can be as short as 30
minutes after the purchase is made, which is much faster
than the best delivery option in the current state. Additionally,
other drone applications include infrastructure construction,
precision agriculture, and photography [2]–[4].

Despite all the benefits of drones, the public has shown
great concern of privacy for the drone applications. A drone
equipped with high resolution camera can surreptitiously
surveil anyone’s backyard 400 feet high in the air. Since 2010,
the Federal Aviation Administration (FAA), has been working
on the UAV regulations to control the risks of commercial

Funded by the Department of Energy, Award Number DE-OE0000780.

drone usage. The most recent rules [5] include requirements on
the pilots, the UAV specs, and the locations where drones are
allowed to fly. However, these rules mainly focus on the safety
protection but fail to defend against the privacy violation.

One promising countermeasure for mitigating drone surveil-
lance is the establishment of no-fly-zones (NFZs) over privacy-
sensitive locations. If a drone is sufficiently far away from a
sensitive area, surveillance cannot be carried out successfully.
The FAA has designated a variety of NFZs, primarily for
safety purposes, around critical infrastructures such as airports.
An established NFZ specifies that no drone is permitted to fly
within 5 miles of the protected location. To more effectively
notify drone operators of NFZs in their area, the FAA has even
published the B4UFLY mobile app [6]. Unfortunately, regu-
lation alone cannot prevent drones from flying over restricted
areas; as the drone navigates in open airspace, it is hard for an
observer on the ground to accurately determine the location of
a drone. Instead, what is needed is a reliable means of tracking
drone locations for the detection of NFZ policy violations.

In this paper, we present the design and implementation
of AliDrone, a geo-location based alibi protocol that enables
drones to generate proof-of-non-entrance to an NFZ. We
define three roles in the system: Zone Owners that own
some property, Drone Operators that operate a drone and
control its navigation through an area, and Auditors, authorized
third parties (e.g., local agents of the FAA) that attest drone
locations and detect any non-compliance on NFZ regulations.
Before flying, the Drone Operator queries the Auditor for the
location of nearby NFZs. While flying, the drone computes an
alibi, i.e., a signed GPS trace, based on its real time location.
At the end of the flight, the Drone Operator submits the drone’s
Proof-of-Alibi (PoA) to the Auditor. The Auditor then verifies
the PoA and initiates punishment on the Drone Operator if a
policy violation is detected.

We design AliDrone with consideration that a Dishonest
Drone Operator may try to navigate the drone over a restricted
area without being detected by the Auditor. Such an attacker
could attempt to forge an innocent compliant route and com-
pute its alibi based on this forged GPS trace. As a result, an
adversary may take a shortcut route or gain pictures of the
restricted area.

Defending against such adversary is challenging. As the
owner of the drone, the Dishonest Drone Operator has priv-
ileged access to the drone software stack as well as any

exposed hardware, meaning the attacker could attempt to
extract security keys used in the alibi protocol or replace the
system components with malicious software.

Our design relies on the existing secure hardware to provide
a trusted execution environment for drones to generate their
Proofs-of-Alibi (PoA). The PoA is a keyed cryptographic hash
of the drone’s GPS trace that is signed by a security key
protected by secure hardware. Thus, the Drone Operator does
not have access to the private signing key. We require the
Drone Operator to submit the alibi (i.e., the GPS trace) along
with this proof to the Auditor. The Auditor knows each drone’s
public key and can therefore verify the signatures. In this way,
the Drone Operator is unable to tamper with the alibi submitted
to the Auditor.

We outline the paper’s main contributions below:
• We present AliDrone, a lightweight and practical alibi

system that enables drones to generate trustworthy proof
of privacy compliance.

• We introduce an adaptive sampling mechanism to minimize
the processing and energy overhead.

• We provide performance benchmarks and perform an ex-
haustive real-world evaluation of AliDrone.
The rest of this paper is organized as follows:

• Section II, describes the background of drones and secure
hardware technology;

• Sections III and IV, demonstrates the system model followed
by the design decisions;

• Section V, describes the hardware platform and implemen-
tation details;

• Section VI, presents the evaluation of AliDrone;
• Section VII, discusses limitation and extensions of

AliDrone;
• Section VIII, is dedicated to related work.

II. BACKGROUND

A. Unmanned Aerial Vehicle (UAV)

An unmanned aerial vehicle, usually referred to as a drone,
is an aircraft without a human pilot onboard. Such devices can
be controlled remotely by the operator within a distance of 200
- 3,000 meters. A typical drone costs from $200 to $1,000.
It flies at up to 40mph with a flight time of 20 - 30 minutes.
Most drones are equipped with a camera, which enables many
popular applications such as aerial photography. Recently,
some drones with programmable features are available on the
market. These drones can be programmed to perform actions
including object tracking, navigation, and surveillance [7].

B. Trusted Execution Environments

Trusted Execution Environment (TEE) is a set of secu-
rity extensions added to main processors. These processors
partition the hardware and software and run a separated
subsystem known as “secure world” in addition to the normal
operating system, a.k.a. “normal world”. The TEE technology
is programmed into the hardware to protect the memory
and peripherals. Consequently, security is enforced without

Fig. 1. OP-TEE Architecture. The code and data in secure world are protected
by hardware. The switching between two worlds are triggered via Secure
Monitor Call (SMC).

degrading the system performance. TEE can be implemented
on commercial secure hardware such as ARM TrustZone [8]
and Intel SGX [9].

After the initial effort in standardizing software development
for TrustZone, ARM partnered with GlobalPlatform to define
a new TEE API. TEE encompasses three major features:
• Safe and secure boot ensures all system software compo-

nents are in a known and trusted state before launching the
operating system.

• Isolated execution of critical applications in a virtualized
environment.

• Data protection of trusted applications in terms of integrity
and confidentiality.

In this work, we leverage the integrity feature of TEE to
authenticate the geo-location data.

C. OP-TEE

OP-TEE is an open source project for TEE in Linux using
the ARM TrustZone technology. It implements a TEE client
in the normal world and a TEE core in the secure world using
the GlobalPlatform TEE System standard. Fig. 1 shows the
architecture of OP-TEE.

OP-TEE provides a minimal secure kernel (OP-TEE core)
which can be run in parallel with a normal world OS such
as Linux. It provides drivers (OP-TEE Driver) for the nor-
mal world OS to communicate with the secure world. The
transition between the two worlds are triggered via Secure
Monitor Calls (SMC). It uses a daemon service in the normal
world, i.e., tee-supplicant, to help the Trusted OS with the
miscellaneous such as storage access.

OP-TEE allows two types of Trusted Applications (TAs)
[10]. A normal TA runs in non-privileged mode in the secure
world. When compiled, a TA is signed by a private key which
is unknown to the user in the normal world. Hence, it can
be stored in the untrusted storage. Every TA is assigned a
unique UUID. When an OP-TEE enabled application calls an
interface provided by a specific TA, it provides the associated
UUID and the interface ID. Then, the tee-supplicant will locate
the TA by the UUID in the storage and help the OP-TEE

core to load the TA. Dynamically loading the normal TAs
can reduce the size of TEE core. However, such TAs cannot
access the devices and peripherals by their physical addresses.
The other type of TA is called Pseudo Trusted Application
(PTA). Unlike the normal TAs which are dynamically loaded
when necessary, PTA are statically built into the OP-TEE core.
PTA can access the peripherals by creating a mapping from
the physical address to the memory. In this work, our design
involves in both TA and PTA components.

III. SYSTEM MODEL

A. Physical Model

We consider a Drone Operator that instructs a drone to nav-
igate a given flight pattern. We represent the drone’s activity
as a series of samples S = (lat, lon, t), each represented as
a tuple of latitude, longitude and timestamp that are sampled
from a GPS receiver. A particular drone flight pattern F can
thus be summarized as:

F = {S0, S1, . . . , Sn}.

This work considers a situation where a drone must navigate
an area in which many NFZs are present. We assume all NFZs
to be circular, and are defined by:

z = (lat, lon, r),

where lat and lon are the latitude and longitude of the center,
and r is the radius of the circle. We refer to the entities who
own the NFZs as Zone Owners throughout the rest of this
paper. If a drone passes into an NFZ, we say that the privacy
of that Zone Owner is violated.

We assume that each drone is associated with an identifier,
similar to a vehicle license plate, which is visible by an
observer on the ground. If a Zone Owner spots a drone close to
her NFZ, she may suspect that privacy violation has occurred.
The Zone Owner will record the drone ID and report the
incident to an Auditor, which is an authorized third party,
e.g., a local Federal Aviation Administration (FAA) agent.
The Auditor uses the drone ID to recover the flight pattern
F from the Drone Operator, then determines if the privacy
violation did occur. In our model, the burden of proof rests on
the Drone Operators to prove conclusively that their drones
could not have been present in the NFZs.

If F is insufficient to produce Proof-of-Alibi, the Auditor
concludes that a privacy violation has occurred. The Auditor
will then initiate punitive measures against the Drone Operator.
The punishment for privacy violation is orthogonal to the
purpose of this work, and can be specified through policy or
legislation.

B. Threat Model

We consider the adversary as a dishonest Drone Operator
(or rogue drone) that wants to violate NFZ airspace without
being detected by the Auditor. Such an adversary may be small
business looking to reduce costs by taking a shortcut, or a
journalist or amateur operator attempting to acquire footage
from a restricted area [11]. To avoid detection, the adversary

will attempt to forge an innocuous route to present to the
Auditor in place of its actual illicit GPS trace. This feat may
be attempted through pre-computing a route that does not
intersect any NFZ, replaying a previously reported route, or
relaying a route from another drone. We use the term GPS
forgery attack to denote this attack in the rest of the paper.

We assume the presence of secure hardware within the
drone that provides a trusted execution environment (i.e.,
ARM Trustzone, Intel SGX). Furthermore, we assume that
an asymmetric sign key pair is generated within TEE by the
hardware manufacturer, and the private key is not known by
the Drone Operator. Side channel attacks on the enclaves [12]–
[14] are not considered in this work. While the attacker can
attempt to install malicious software on the drone platform,
we assume the correctness of the GPS hardware. We also do
not consider GPS spoofing attacks in which the GPS receiver
is manipulated from the ground through the broadcast of
incorrect GPS signals [15], [16]; such attacks can be mitigated
through existing defenses [17]–[20].

IV. SYSTEM DESIGN

A. Design Goals

Our system protects the privacy of Zone Owners by allowing
them to request no-fly-zones (NFZs) upon their properties. The
solution enables the drones to present trustworthy, geo-location
based proof-of-alibis (PoAs) proving that the drones do not
fly over the NFZs. The PoA will be verified by a trusted third
party, known as the Auditor. Before we describe the design
decisions in detail, we list our design goals as follows:

G1 Completeness: The PoAs generated by the drone must
prove that it does not fly over any NFZ during the entire
flight period.

G2 Low Overhead: The computation of trustworthy PoAs
should impose small processing overhead for the drones.

G3 Unforgeability: The Auditor must not accept any PoA if it
is forged by Drone Operator.

B. Protocol Overview

As described in section III, our system involves three
entities: a Drone Operator, a Zone Owner and an Auditor.
Fig. 2 demonstrates the interactions among these entities. We
describe the high level protocol in this section. A summary of
cryptographic keys and data used by the protocol is presented
in Table I.

0. Drone Registration: We require that a drone should be
registered at the Auditor before operated in the field. The
Drone Operator will generate an asymmetric keypair D =(D+,
D−) and provide the public key D+ to the Auditor. To enable
trustworthy report of geo-locations, we require that an asym-
metric keypair for the Trusted Execution Envirionment (TEE)
on the drone T = (T+, T−) is generated at manufacturing
time. The TEE sign key T− is only accessible by TEE and
the verification key T+ is known to the drone owner when the
device is merchandised. At registration, the TEE verification
key T+ should also be submitted to the Auditor. An identifier

Notation Description Knowledge
iddrone Identifier of drone. It must be carried on the drone during operation. All parties
idzone Identifier of NFZ. Associated with the latitude, longitude and radius of the property. All parties
T− Private TEE sign key. Used to sign GPS data in TEE. Drone TEE
T+ Public TEE verification key. Enables verification of signed GPS data. Drone Operator/Auditor
D− Private sign key of a Drone Operator. Used to authenticate zone query messages. Associated with iddrone. Drone Operator
D+ Public verification key of a Drone Operator. Enables verification of signed zone query messages. Auditor

Table I
Notations of keys and data used by AliDrone protocol. Column Knowledge indicates the parties who have access to the information.

Fig. 2. An overview of system workflow. The process starts where the Zone
Owner submits the coordinates to the Auditor (task 1). Then, Drone Operator
submits its flight plan to the Auditor and in response receives the NFZs within
the flight zone (task 2 and 3). After the flight, Drone Operator provides the
proof-of-alibi, showing that it has not flown over the NFZs to the Auditor
(task 4).

iddrone will be then issued to the drone. This identifier is similar
to a vehicle license plate, which must be carried on the drone
when it operates. Therefore, an entry of registered drone can
be expressed as (iddrone, D

+, T+).
1. Zone Registration: In order to register an NFZ, a Zone
Owner submits to the Auditor the coordinates and radius of the
property, i.e., z = (lat, lon, r), as well as a proof of ownership.
Upon request approval, the Auditor will issue an identifier
idzone to the Zone Owner and add a new entry (idzone, z) to
the NFZ database.
2-3. Zone Query/Response: Before a drone starts navigation,
the Drone Operator should query the auditor for the NFZ
information. The query is comprised of the drone id, two
GPS coordinates (x1, y1) and (x2, y2), indicating a rectangular
navigation area, and a random nonce signed by the drone sign
key D−, i.e.,

(iddrone, (x1, y1), (x2, y2), nonce, Sig(nonce, D−)).

The Auditor first checks if the query is sent from a
registered drone by verifying the signature on the nonce.
Then, it pulls a list of NFZs {z1, z2, · · · , zm} within the
rectangle and responses with the coordinates and radii of the

zones. The drone can use the NFZ information to compute a
viable route to its destination.

4. Proof-of-Alibi Submission: During the flight, the drone
computes the Proof-of-Alibis (PoAs) and persists the PoAs
to storage. The purpose of the PoA is to show that the
drone does not enter any NFZ during the flight. The detailed
design of PoA is presented in section IV-C. At the end of
the flight, the Drone Operator must submit the PoAs to the
Auditor for verification. To enable real-time auditing, the drone
could alternately transmit its PoAs in real-time to the Auditor;
however, we do not pursue this solution in our work as it would
increase battery drain, violating Goal G2.

C. Trustworthy Proof-of-Alibi

In this section, we introduce the concept and design of
Proof-of-Alibi (PoA), which enables drones to generate un-
forgeable GPS traces. We first explain how the geo-location
information serves as a proof of privacy compliance (Goal G1).
Then, we demonstrate an extension in the trusted execution en-
vironment (Goal G3) and an optimization to reduce processing
overhead (Goal G2).

1) Possible Traveling Range: To prove that a drone does not
enter an NFZ, we show that it is physically impossible to travel
into the zones based on its geo-locations. The idea of this proof
is based on the fact that drones have a maximum traveling
speed vmax, which is restricted to 100 mph by the FAA
regulation [5]. This enables the computation of the possible
traveling range using two GPS coordinates.

Consider that the drone produces two GPS samples S1 =
(x1, y1, t1) and S2 = (x2, y2, t2). Denote the location of the
drone at arbitrary time t ∈ [t1, t2] as (x, y), the possible
traveling range can be described as an ellipse E with (x1, y1)
and (x2, y2) being the two focuses:

E(S1, S2) = {(x, y) | d1 + d2 ≤ vmax(t2 − t1)},

where di =
√

(x− xi)2 + (y − yi)2.
Suppose the drone operates near an NFZ z = (x0, y0, r0).

The GPS samples (S1, S2) can prove that the drone does not
enter zone z during (t1, t2) if the ellipse does not intersect with
the circle representing zone z. Otherwise, it suggests that the
drone may travel into zone z during [t1, t2].

During the flight, we require the drone to collect a set of
GPS samples and define the set of the samples as alibi:

alibi := {S0, S1, · · · , Sn}.

Fig. 3. Possible traveling range and a single NFZ. The possible traveling
range should not intersect with the NFZ to produce sufficient alibi.

Given a set of NFZs Z = {z1, z2, · · · , zm}, we say that the
alibi is sufficient if every pair of two consecutive GPS samples
prove impossibility of traveling into all the NFZs, i.e.,

E(Si, Si+1) ∩

(⋃
z∈Z

z

)
= ∅, ∀ i < n. (1)

Otherwise, we say the alibi is insufficient. Insufficient alibi
suggests that the drone may travel into NFZs during the flight.
Hence, it does not show compliance with the no-fly rule.
Consider a simple case where only one NFZ is on the map
shown in Fig. 3. The minimum sampling rate that produces
sufficient alibi should results in an ellipse that is tangent to
the NFZ.

2) TEE Enabled GPS Sampling: To ensure that such alibi
cannot be forged by Drone Operators, our solution leverages
trusted hardware to authenticate the GPS data in a Trusted
Execution Environment (TEE). We move the sampling logic
to the secure world to guarantee that the GPS data is collected
from the GPS hardware. The GPS data is signed by the TEE
sign key T− before it leaves the secure world. We define the
Proof-of-Alibi (PoA) as a series of GPS samples along with
the TEE signatures, i.e.,

PoA := {(S0,Sig(S0, T
−)), (S1,Sig(S1, T

−)), · · · }.

The sign key T− is only available to TEE such that a
Drone Operator in the untrusted environment cannot forge the
signatures. The verification key T+ is known to the Auditor at
registration stage, and thus the Auditor is able to detect if the
GPS data is modified. Our design can be generalized to trusted
hardware platforms including Intel SGX and ARM TrustZone.
We present the an ARM TrustZone based architecture of
AliDrone in Fig. 4.

The Auditor runs an AliDrone Server. It stores the informa-
tion of registered drones and NFZs, and provides an interface
to query the NFZ information to the drone client. Upon
receiving the PoAs from drones, it verifies the sufficiency of
the PoAs (see equation (1)). After the PoA verification, the

AliDrone Server should save the PoAs for a couple of days.
This is because a Zone Owner may report a violation after-
wards and the PoAs will serve as evidence for the accusation.

The drone client consists of three components: GPS Driver,
GPS Sampler and Adapter. GPS Driver runs in the kernel space
of the secure world. It is used to access the GPS receiver and
parse the raw GPS data into coordinates and timestamps.

GPS Sampler runs in non-privileged mode in the secure
world. It exposes an interface GetGPSAuth to the Adapter
to produce an authenticated GPS sample. It reads the parsed
GPS data from the underlying GPS Driver and signs the data
with the TEE sign key T−.

The Adapter is a daemon service in the normal world. It
has access to the GPS receiver and controls the PoA sampling
rate using the adaptive sampling mechanism, which will be
introduced in section IV-C3. In addition, it is responsible for
encrypting the PoA with the public encryption key of the
AliDrone Server.

3) Adaptive Sampling: A commercial GPS receiver can
update the GPS measurements with a maximum rate of
5Hz [21]. However, performing frequent sampling in AliDrone
is expensive because signature and world-switching operations
are costly. Maintaining the maximum sampling rate has a
non-negligible amount of processing overhead on the resource
limited hardware. Therefore, an adaptive sampling mechanism
is essential to minimize the processing overhead for the drones.

As mentioned in section IV-C1, two samples (S1, S2) are
sufficient to prove alibi from zone z if the ellipse of possible
traveling range does not intersect the zone, i.e.,

E(S1, S2) ∩ z = ∅.

Given a traveling trace described by a series of samples
{S0, S1, · · · , Sn} such that ti < ti+1, we can conclude that

E(Si, Sj) ⊂ E(Si, Sk), ∀ i < j < k.

This implies that if the sample pair (Si, Sk) is sufficient, all
the intermediate samples in between are not needed in the
PoA. Denote the PoA as a set of samples selected from the
trace {Sk0

, Sk1
, · · · , Skm

} and let the first sample from PoA
be Sk0

= S0. The task of the Adapter is to find

ki+1 = argmax
j

(E(Ski
, Sj) ∩ z = ∅) , ∀ ki < j < n.

Since the Sampler only samples the current GPS information
by demand, it can be too late to recover a previous sample
when the current location already violates PoA sufficiency.
Therefore, the Adapter must take a sample when the bound-
aries of the possible traveling range and the NFZ are close.

Consider the worst case where the drone flies towards the
NFZ z = (x0, y0, r0) at maximum speed vmax. Assume that
the GPS receiver has a maximum update rate of R Hz. Let
the last sample recorded in PoA be S1 = (x1, y1, t1) and the
latest sample measured by the Adapter be S2 = (x2, y2, t2)
such that

D1 + D2 ≥ vmax(t2 − t1) (2)

Fig. 4. AliDrone System Architecture. AliDrone enables trustworthy PoA generation on the drone by performing GPS sampling in a TEE. The GPS data is
sampled, encrypted and signed by the trusted application GPS Sampler. The Adapter runs adaptive sampling algorithm and adjusts GPS sampling rate in real
time. The Auditor runs AliDrone Server to verify the PoA uploaded by the drone.

where Di =
√

(xi − x0)2 + (yi − y0)2 − r is the distance
between the drone and the boundary of z. The next GPS update
will be made in ∆t = 1

R and the difference of such distance
will be ∆D = −vmax

R .
The sample S2 should be made if the next measurement

will be insufficient, i.e.,

D1 + D2 + ∆D < vmax(t2 − t1 + ∆t).

Therefore we have

D1 + D2 < vmax(t2 − t1 + 2/R) (3)

Therefore, we can conclude that a sample should be
recorded in PoA if conditions (2) and (3) are both true.

When multiple NFZs are present, we only need to prove
PoA sufficiency for the closest zone. We present the Adaptive
Sampling algorithm in Algorithm 1. In each iteration, the
Adapter first samples the GPS data in the normal world by
calling ReadGPS() with the same rate R that the GPS
receiver updates the measurements. Then, it finds the closest
zone from NFZ list. If both conditions (2) and (3) hold, it
calls GetGPSAuth(), which acquires the sample and the
signature from the GPS Sampler in the secure world.

V. HARDWARE AND IMPLEMENTATION

A. Hardware Platform

We choose ARM Trustzone [8] as our secure hardware
platform. Although Intel SGX [9] processors provide better
performance in general, they do not emulate the resource
limited computation environment of drone hardware. Similar

Algorithm 1: Adaptive Sampling Algorithm. The adap-
tation is achieved by skipping unnecessary calls of
GetGPSAuth() interface.

NextSample (R, S1, Z);
Input : R - GPS Update Rate; S1 - Last GPS Sample

in PoA; Z - NFZ list.
Output: S2 - Next GPS sample in PoA; Sig(S2, T

−) -
Signature of S2

while true do
S2 ← ReadGPS();
z ← FindNearestZone(S2, Z);
D1 ← Dist(S1, z);
D2 ← Dist(S2, z);
if
S2.t−S1.t ≤ (D1 +D2)/vmax < S2.t−S1.t+ 2/R
then

S2, Sig(S2) ← GetGPSAuth();
return S2, Sig(S2, T

−);
else

sleep(1/R);
end

end

to the secure enclaves in SGX, the TrustZone partitions the
software and hardware into two worlds, a normal world and
a secure world. The hardware logic ensures that the resources
in the secure world is inaccessible from the normal world.

Fig. 5. Hardware Platform consists of a Raspberry Pi 3 Model B and Adafruit
Ultimate GPS breakout.

Specifically, we implement a proof-of-concept prototype of
AliDrone client on Raspberry Pi 3 Model B [22], which has
a 1.2GHz 64-bit quad-core ARMv8 CPU that supports ARM
TrustZone. Previous effort has shown feasibility of deploying
a practical drone controller on Raspberry Pi [23].

We connect the Raspberry Pi with an Adafruit Ultimate GPS
breakout [24] via GPIO ports as shown in Fig. 5. The sampling
rate of the GPS receiver can be configured in the range of [1
Hz, 5Hz]. It outputs the GPS messages following the NMEA
0183 standard [25].

We acknowledge that a dishonest Drone Operator may
instead connect a malicious GPS receiver or a programmable
UART device to generate GPS messages by purpose. Con-
sequence of such attack leads the Trusted Execution Environ-
ment to sign forged GPS messages and thus breaks the security
guarantee of our system. Therefore, the manufacturers should
consider an alternative hardware design by using embedded
GPS chips to prevent this attack.

B. GPS Driver & GPS Sampler

The GPS Driver is implemented in kernel space of OP-
TEE core. It maps the physical address of the GPIO RX
port to a memory buffer. In particular, we are interested in
the $GPRMC messages, which contains information includ-
ing latitude, longitude, velocity and timestamps. The latest
$GPRMC message is read from the buffer and parsed into
(latitude, longitude, timestamp) tuple using an open-sourced
library Libnmea [26]. An interface GetGPS() is exposed to
the GPS Sampler, which returns the latest GPS tuple.

The GPS Sampler is implemented as a Trusted Application
(TA) in non-privileged mode in the secure world. It uses the
private sign key to authenticate the GPS tuples.

An interface GetGPSAuth() is provided to the Adapter.
Once GetGPSAuth() is called, it reads the latest GPS
tuple from the GPS Driver and then and signs the sam-
ple with the private sign key. Our implementation uses

TEE_ALG_RSASSA_PKCS1_V1_5_SHA1 algorithm to sign
the GPS data.

C. Adapter

The Adapter is implemented as a daemon service in the
user space of the normal world. We implement the adaptive
sampling algorithm in the Adapter and gets the authenticated
GPS tuples by calling GetGPSAuth() from the GPS Sam-
pler. We use RSAES_PKCS1_v1_5 algorithm to encrypt the
GPS data with the public key of the Auditor and persist the
ciphertext along with the signature in the local storage.

VI. EVALUATION

A. Field Studies

In this section, we evaluate the AliDrone in two cases, each
representing a specific pattern of the surrounding no-fly-zones.

1) Experimental Setup: We deploy the hardware described
in section V-A and emulate the flight pattern of a drone using a
vehicle. As the personal properties may be reserved as NFZs, it
is reasonable to assume that the airspace upon roads and public
areas like parks are available for commercial drone navigation.
We emulate the GPS sampling of drones by driving the vehicle
around a small county region. The maximum sampling rate of
the GPS sensor was set to 5 Hz and the entire GPS traces
including latitude, longitude and timestamps were recorded.
The collected GPS data was replayed to the GPS Sampler to
emulate the real-time GPS samples read from the GPS Driver
interface.

We specified two sets of no-fly-zones into the AliDrone
client. In the first case, we set a single NFZ with a large
radius. This case represents large no-fly areas in the city or
nearby critical infrastructures like airports and power plants. In
the second case, we set multiple small and dense no-fly-zones
along the route of the driving path. This case simulates the
scenario where the drone flies through a residential area and
it should not fly over any of the neighbors with no-fly-zone.

We compare the adaptive sampling with a baseline approach
which we refer as “Fix Rate Sampling”. Every time after a
GPS data is sampled, the sampling thread will sleep for a
period according to the sampling rate. Since the GPS hard-
ware has an independent rate for updating the measurements,
the sampler cannot always get the most updated GPS data
immediately after it wakes up. Therefore, we let the sampler
wait until the first measurement update for each time after
it wakes up. As a result, the actual sampling rate is as
fast as configured. For example, if the update rate of GPS
hardware is 5Hz, five samples are produced in each second at
t = 0.0, 0.2, 0.4, 0.6, and 0.8s. If the sampler runs at 3Hz, it
wakes up at t = 0.0, 0.33, and 0.67s. Then the time that three
samples are taken should be t = 0.0, 0.4, 0.8s.

2) Airport Scenario: FAA regulations forbid drone opera-
tions within 5 miles of any airport. In this scenario, we set an
NFZ centered at an airport with a radius of 5 miles. The GPS
trace starts about 30 feet outside the boundary of the NFZ.
The vehicle drives away from the NFZ for about 3 miles in
12 minutes.

We set the sampling rate as 1Hz and keep track of the
total number of GPS samples as well as the distance to the
boundary. When the vehicle is close to the boundary, the
sampling rates of fix rate sampling and adaptive sampling
are similar. As the distance increases, the adaptive sampling
requires fewer samples for a sufficient alibi. Comparing to the
649 samples collected by 1Hz fix rate sampling, the adaptive
sampling uses only 14 GPS samples.

0 5000 10000 15000
Distance to No-fly-zone (ft)

100

101

102

Sa
m

pl
es

 (#
)

1Hz Fix Rate Sampling
Adaptive Sampling

Fig. 6. In airport scenario, we keep track of the total number of GPS samples,
and the distance between the vehicle and the boundary of the NFZ.

3) Residential Scenario: The residential areas are com-
prised of many small but dense NFZs. In this scenario, we
drive the vehicle through a local county for about one mile.
Fig. 7 shows the satellite view of the residential area and
marks the driving route from location A to B. For purpose
of anonymity, the names and labels are removed from the
map. We use Google Maps to identify the houses along the
driving route and mark each of them as an NFZ. Every NFZ
is represented by a circle centers at a house with a radius of
20 feet. In total, 94 NFZs are identified in this area.

Fig. 7. Map and driving route of the residential area.

We are interested in three metrics in the residential scenario.
Distance to the nearest NFZ: As the vehicle moves, its
distances to the NFZs are changing. However, only the

50
100

di
st

an
ce

 (f
t) (a) Distance to the Nearest No-fly-zone

0
2
4

ra
te

 (H
z)

(b) Instantaneous Sampling Rate

0 25 50 75 100 125 150
Time (s)

0
10
20
30
40

co
un

t (
#)

(c) Total Number of Insufficient PoA

2Hz Fix Rate Sampling
3Hz Fix Rate Sampling

5Hz Fix Rate Sampling
Adaptive Sampling

Fig. 8. We measure three metrics in the residential scenario: (a) distance to the
nearest NFZ; (b) instantaneous sampling rate; (c) total number of insufficient
Proof-of-Alibi.

nearest NFZ affects the sampling rate because a PoA proving
alibi to the nearest NFZ is also sufficient for the other NFZs.
The distance of the vehicle to the nearest NFZ is shown
in Fig. 8-(a). Such distance indicates the density of the
neighborhood. At the beginning, the distance is primarily
within range 50 - 100 ft. When the vehicle enters a more
dense area, the distance decreases to 20 - 70 ft. At the closest
point, the vehicle is only 21 ft to the boundary of the nearest
NFZ.

Instantaneous Sampling Rate: We compare the the
instantaneous sampling rate of adaptive sampling to fix rate
sampling with 2 Hz, 3 Hz and 5 Hz in Fig. 8-(b). Note that
the sampler may wait for a small period time for the first
GPS update, the actual sampling rate in Fix Rate Sampling
can be lower than the settings. When the vehicle travels in
the less dense area, the Adaptive Sampling uses a sampling
rate lower than 2Hz. This saves the total number of GPS
samples produced in PoA. As the vehicle enters the dense
area, the adaptive algorithm pushes to higher sampling rate
to preserve the sufficiency of PoA.

Total Number of Insufficient PoA: If the time between
two continuous GPS samples is too long, the trace cannot
provide sufficient PoA. For every continuous sample pair
(xi, yi, ti) and (xi+1, yi+1, ti+1), we count the insufficient
PoAs as follows:

count +=

{
1 if minj(di,j + di+1,j) ≤ vmax(ti+1 − ti),

0 otherwise,

where di,j is the distance from the location of sample i to
NFZ j.

Fig. 8-(c) demonstrates the total number of insufficient PoAs
over time. In the first one and a half minutes, no insufficient
PoA is spotted. As the vehicle drives into the dense area, the

fix rate sampling with 2Hz and 3Hz are unable to produce
sufficient PoA. In total, 39 and 9 insufficient PoAs are counted
in 2Hz and 3Hz Fix Rate Sampling.

Adaptive sampling achieves as few insufficient PoAs as fix
rate sampling (5Hz). However, an insufficient PoA is identified
at a time the vehicle is 25 ft to an NFZ. By further inspection
of the GPS trace, we find that the GPS hardware misses an
update when insufficient PoA takes place. This means that the
maximum sampling rate drops from 5Hz to 2.5Hz at this point.

B. Benchmarks

In this section, we present the benchmarks of AliDrone by
testing the processing and energy overhead in a controlled
laboratory environment. The experimental platform of the
benchmarks is Raspberry Pi 3 Model B, which has a 1.2 GHz
64-bit quad-core ARMv8 processor and a 1 GB LPDDR2-
900 SDRAM memory. The CPU utilization and memory
consumption of AliDrone are measured by running the GPS
Sampler on a single core under a fixed sampling rate. The
power consumption is derived from the power model presented
by Kaup et al. [27]:

PCPU(u) = 1.5778W + 0.181 · u ·W (4)

where u is the average CPU utilization ranging from 0 to 1.
We first run the GPS Sampler under a fixed sampling rate of

2 Hz, 3 Hz and 5 Hz for 5 minutes. We use top command to
measure the CPU utilization and memory consumption once
per second and take the average over all the measurements.
Power consumption is computed by equation (4). Two encryp-
tion and sign key sizes (1024 and 2048 bits) are tested in the
benchmarks. Then, we replay the GPS data collected from the
two field studies and run the measurements again using the
same settings.

Table II shows the benchmarks for CPU utilization, power
consumption and memory consumption. Since the Raspberry
Pi has four cores, the range of CPU utilization measurement
is [0, 25%].

Key Size (bits) Case CPU (%) Power (W)

1024

Fixed 2 Hz 2.17 ±0.05 1.5817
Fixed 3 Hz 3.17 ±0.04 1.5835
Fixed 5 Hz 5.59 ±0.06 1.5879

Airport 0.024 ±0.160 1.5778
Residential 1.567 ±0.827 1.5806

2048

Fixed 2 Hz 10.94 ±0.09 1.5976
Fixed 3 Hz 16.81 ±0.10 1.6082
Fixed 5 Hz - -

Airport 0.122 ±0.810 1.5780
Residential - -

Memory 3.27 MB (0.3%)

Table II
CPU, Power and Memory Benchmarks

The benchmark results show that AliDrone only consumes a
small amount of memory of about 0.3%, which suggests that it
will not affect other memory intensive tasks. In terms of CPU
utilization, AliDrone can support trustworthy GPS sampling
with the maximum rate of 5 Hz using a short sign key (1024
bits). The computation overhead introduced by AliDrone is

about 5.6% on average. In the case of large TEE sign key
(2048 bits), AliDrone cannot keep up with the maximum
sampling rate. This result implies that more efficient signature
schemes are required to support higher GPS sampling rate.

The real-world benchmarks demonstrate that the adaptive
sampling mechanism can further reduce the processing over-
head. Running AliDrone in a dense residential county using
a 1024-bit sign key only costs an average of 1.5% CPU
cycles. Again the measurement under 2048-bit sign key is
not presented because of the large overhead of computing
asymmetric signatures.

VII. DISCUSSION

In this section, we discuss the limitations and future exten-
sions of AliDrone.

A. Limitations

1) Cryptographic Operations with Long Keys: As men-
tioned in section VI-B, high sampling rate is needed when
the drone is close to the no-fly-zones. However, the hardware
may be unable to keep up with the sampling rate if the keys are
long. As the asymmetric encryption and signature operations
are costly in the resource limited hardware platform, we may
consider the following options.

a) Symmetric cryptography: A drone may setup
ephemeral symmetric keys with the Auditor every time before
it starts a flight. Such keys can be used to encrypt and sign
the GPS data. However, the sign key must be inaccessible by
the Drone Operator. Thus, a key exchange protocol is needed
between the Drone TEE and the Auditor.

b) Sign all traces at once: We may consider the option
that caches the GPS samples in the secure memory and sign
the whole trace at once. This is feasible because the flight time
of drones are usually no more than 30 minutes and the size
of each GPS sample is small.

2) GPS Spoofing Attacks: Our solution does not consider
GPS spoofing attacks, in which attackers send incorrect GPS
signals to manipulate the GPS receiver. It is even more
challenging to mitigate such attacks in the context that the
attacker is the owner of the drone.

A potential solution can be developed by embedding the
GPS spoofing detector into the secure world [18]–[20]. If the
hardware is running in a suspicious environment, the GPS
Sampler can decline to provide authenticity services.

B. Future Extensions

1) 3D Physical Model: We briefly demonstrate how to
extend AliDrone to include altitude information using a 3-
dimensional physical model.

The GPS sample can be modified as a 4-tuple S =
(lat, lon, alt, t), where alt represents the altitude of the drone.
Similarly, the altitude dimension should be added to the NFZ
specification, i.e., z = (lat, lon, alt, r) can be interpreted as a
cylinder no-fly-region.

Given two consecutive GPS samples S′1 = (x1, y1, z1, t1)
and S′2 = (x2, y2, z2, t2), the possible traveling range can be
described as an ellipsoid

E ′(S′1, S′2) = {(x, y, z) | d1 + d2 ≤ vmax(t2 − t1)},

where di =
√

(x− xi)2 + (y − yi)2 + (z − zi)2. Hence,
these two GPS samples can prove alibi to an NFZ z′ =
(x0, y0, z0, r0) if and only if the ellipsoid does not intersect
with the cylinder, i.e.,

E ′(S′1, S′2) ∩ z′ = ∅.

2) Arbitrary No-fly Zones: The design of proof-of-alibi
assumes that all no-fly zones are circular. In real world
applications, the zone owners may want to register a no-
fly zone with a non-circular shape. We show how to extend
AliDrone to adapt with arbitrary shaped NFZs.

At the NFZ registration phase, the zone owner can describe
the NFZ by a polygon with n vertices. The auditor will first
find a smallest circle that covers all the vertices, and use
this circle to represent the NFZ. This problem is well known
as the smallest circle problem and can be solved in linear
time [28]. The computation of each NFZ only happens once
at the registration phase. Therefore, the computation cost for
the auditor can be negligible.

3) Privacy-preserving Verification: The design of AliDrone
relies on a trusted Auditor to verify the PoAs. However, a
dishonest Auditor may take advantage of AliDrone to track
drone using the geo-location information in PoAs. Such an
adversary may be an employee or insider of FAA who tends
to leak the GPS traces of commercial drones and gains profit
from this activity.

AliDrone can be extended by assuming the presence of an
honest-but-curious Auditor. The privacy-preserving extension
aims to prevent the Auditor from learning the entire GPS
trajectory from PoAs while still allows it to conclude on a
boolean value whether the drone violates NFZ compliance.

A potential solution can be developed using one-time en-
cryption scheme [29]. Drone Operators can use one-time keys
to encrypt each GPS sample Si in the PoA, and uploads the
encrypted PoA to the Auditor. When a Zone Owner spots
a drone in the NFZ, she reports the potential violation to
the Auditor by sending a message including her zone id, the
drone’s id and time of incident. By receiving the accusation,
the Drone Operator can reveal the two corresponding GPS
samples in the PoA by sending the two one-time encryption
keys. In this way, the Auditor can only learn the partial GPS
trajectory of the drone.

VIII. RELATED WORK

A. Drone Privacy

Privacy is one of the major concerns about the pervasive
deployment of UAVs. Nevertheless, among cybersecurity, pri-
vacy and public safety issues [30], the previous research on
drone privacy was limited to regulations [31]–[33]. The most
promising approach suggested by Cavoukian [34] was to apply

Privacy by Design (PbD) principle to drone technologies.
However, even though the drone system is complied with PbD,
an authorized drone operator can always attach a small camera
to the drone and covertly capture surveillance videos.

To the best of our knowledge, our work is the first technical
solution enabling drones to present proof of privacy compli-
ance.

B. Trusted Execution Environment

Trusted Execution Environment (TEE) technology has re-
ceived excessive research interest in recent years. Intel soft-
ware guard extension (SGX) [35], ARM TrustZone [8], [36]
and virtual TEE solution [37] made it possible to secure
sensitive code or data even if the system is comprised with
root access.

Utilizing TEE will allow us to build systems with stronger
security privileges [38], [39]. Specifically, Schuster et al.
[40] presented a verifiable Hadoop system which keeps code
and data secret even if the machines in a data center are
compromised. Zhang et al. [41] designed an efficient two-
factor authentication scheme on ARM TrustZone and achieved
comparable security assurance to hardware token based solu-
tion. Liu and Srivastava [42] used ARM TrustZone to protect
essential

C. Location Forgery

An abundant amount of work focused on GPS spoofing,
where the attacker sends spoof signals to confuse victim’s GPS
device [17], [43], [44]. In contrast, very few literatures were
to deal with the issue that users forge the location information
based on correct GPS readings.

Li et al. [45] presented a defense against “localtion cheat-
ing attack” by issuing location proof from the nearby WiFi
access points. Oh et al. [46] allowed nearby mobile devices
to cooperate and to unauthorize a forged location generated
by attackers. However, these approaches are not suitable for
detecting location forgery in drones. First, there is no fixed
object like WiFi access points in the air so as to help with
the location verification. Second, while commercial drones are
flying in the air, they can hardly form a short range wireless
network because high density of drones can lead to higher
probability of collision.

D. Drone Routing

Although we do not focus on the routing problem in this
paper, this class of literature is complementary to our work,
and can be used to optimize the Proof-of-Alibi. The routing
algorithms are specifically designed depending on the task that
the drone is part of [47], [48].

Our approach to generate PoA is similar to the one used in
[49], in which the network routing system can generate proof
that the route does not enter certain prohibited areas specified
by the sender of packets.

IX. CONCLUSION

In this work, we have considered the privacy issue in
regard to drones. In specific, we solve the challenging task of
determining whether a drone has entered NFZs in small and
dense areas. We design a lightweight Proof-of-Alibi system
to enable drones to show NFZ compliance. Consequently,
our system facilitates trustworthy auditing of drone privacy
compliance.

ACKNOWLEDGEMENT

This work was supported in part by XXX CNS grants XXX,
and XXX. The views expressed are those of the authors only.

REFERENCES

[1] (2016, Oct.) Amazon air prime. https://goo.gl/3NHNre.
[2] (2016, Oct.) How drones are being used in 2016. https://goo.gl/ZbQirw.
[3] P. J. Hiltner, “Drones are coming: Use of unmanned aerial vehicles for

police surveillance and its fourth amendment implications, the,” Wake
Forest JL & Pol’y, vol. 3, p. 397, 2013.

[4] T. Krajnı́k, V. Vonásek, D. Fišer, and J. Faigl, “Ar-drone as a platform
for robotic research and education,” in International Conference on
Research and Education in Robotics. Springer, 2011, pp. 172–186.

[5] (2016, Oct.) FAA summary of small unmanned aircraft rule (part 107).
https://goo.gl/JbpgST.

[6] (2016, Oct.) FAA B4UFLY. https://goo.gl/EdxuJ9.
[7] (2017, Oct.) Codrone. https://www.thisiswhyimbroke.com/

worlds-first-programmable-drone/.
[8] (2016, Oct.) Arm tee reference documentation. https://goo.gl/TGq7Kg.
[9] Intel. (2017, May) Intel software guard extensions (sgx) sdk. https://goo.

gl/vp3Xm3.
[10] (2017, May) Op-tee trusted application. https://goo.gl/72ebW1.
[11] J. Daniels, “As Sand Fire rages, feds turn up heat in fight against drones

interfering in wildfires,” https://goo.gl/NBECb5, Jul. 2016.
[12] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter,

“Practical mitigations for timing-based side-channel attacks on modern
x86 processors,” in Security and Privacy, 2009 30th IEEE Symposium
on. IEEE, 2009, pp. 45–60.

[13] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating
controlled-channel attacks against enclave programs,” in ISOC Network
and Distributed System Security Symposium, 2017.

[14] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza, “Asyncshock:
Exploiting synchronisation bugs in intel sgx enclaves,” in European
Symposium on Research in Computer Security. Springer, 2016, pp.
440–457.

[15] S. Peterson and P. Faramarzi, “Exclusive: Iran hijacked US drone, says
Iranian engineer,” https://goo.gl/3gK56T, Dec. 2011.

[16] J. Saarinen, “Students hijack luxury yacht with GPS spoofing,” https:
//goo.gl/BvXi61, Jul. 2013.

[17] K. D. Wesson, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys, “An
evaluation of the vestigial signal defense for civil gps anti-spoofing,” in
Proceedings of the ION GNSS Meeting, 2011.

[18] M. L. Psiaki, B. W. O’Hanlon, J. A. Bhatti, D. P. Shepard, and
T. E. Humphreys, “Gps spoofing detection via dual-receiver correlation
of military signals,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 49, no. 4, pp. 2250–2267, 2013.

[19] B. W. O’Hanlon, M. L. Psiaki, J. A. Bhatti, D. P. Shepard, and
T. E. Humphreys, “Real-time gps spoofing detection via correlation of
encrypted signals,” Navigation, vol. 60, no. 4, pp. 267–278, 2013.

[20] J. Wang, W. Tu, L. C. Hui, S. Yiu, and E. K. Wang, “Detecting time
synchronization attacks in cyber-physical systems with machine learning
techniques,” in Distributed Computing Systems (ICDCS), 2017 IEEE
37th International Conference on. IEEE, 2017, pp. 2246–2251.

[21] I. Leveson, “Benefits of the new gps civil signal,” Inside GNSS, vol. 1,
no. 5, pp. 42–47, 2006.

[22] (2017, May) Raspberry pi 3 model b. https://goo.gl/tHUidL.
[23] (2017, May) The drone pi. https://goo.gl/vzqajc.
[24] (2017, May) Adafruit ultimate gps breakout. https://goo.gl/MSMXiy.
[25] R. Langley, “Nmea 0183: A gps receiver,” GPS world, 1995.
[26] (2017, May) Libnmea: C library for parsing nmea 0183 sentences. https:

//goo.gl/An9Xq6.

[27] F. Kaup, P. Gottschling, and D. Hausheer, “Powerpi: Measuring and
modeling the power consumption of the raspberry pi,” in Local Com-
puter Networks (LCN), 2014 IEEE 39th Conference on. IEEE, 2014,
pp. 236–243.

[28] N. Megiddo, “Linear-time algorithms for linear programming in rˆ3 and
related problems,” SIAM journal on computing, vol. 12, no. 4, pp. 759–
776, 1983.

[29] M. Abdalla, O. Chevassut, and D. Pointcheval, “One-time verifier-
based encrypted key exchange.” in Public Key Cryptography, vol. 3386.
Springer, 2005, pp. 47–74.

[30] E. Vattapparamban, İ. Güvenç, A. İ. Yurekli, K. Akkaya, and S. Uluağaç,
“Drones for smart cities: Issues in cybersecurity, privacy, and public
safety,” in Wireless Communications and Mobile Computing Conference
(IWCMC), 2016 International. IEEE, 2016, pp. 216–221.

[31] R. Calo, “The drone as privacy catalyst,” Stanford Law Review Online,
vol. 64, pp. 29–33, 2011.

[32] A. Harrington, “Who controls the drones?[regulation unmanned air-
craft],” Engineering & Technology, vol. 10, no. 2, pp. 80–83, 2015.

[33] B. Jenkins, “Watching the watchmen: Drone privacy and the need for
oversight,” Ky. LJ, vol. 102, p. 161, 2013.

[34] A. Cavoukian, Privacy and drones: Unmanned aerial vehicles. Infor-
mation and Privacy Commissioner of Ontario, Canada Ontario, Canada,
2012.

[35] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology
for cpu based attestation and sealing,” in Proceedings of the 2nd inter-
national workshop on hardware and architectural support for security
and privacy, vol. 13, 2013.

[36] Lenaro. (2016, Oct.) Op-tee. https://goo.gl/53ZVmy.
[37] B. McGillion, T. Dettenborn, T. Nyman, and N. Asokan, “Open-

tee–an open virtual trusted execution environment,” in Trust-
com/BigDataSE/ISPA, 2015 IEEE, vol. 1. IEEE, 2015, pp. 400–407.

[38] J. Winter, “Experimenting with arm trustzone–or: How i met friendly
piece of trusted hardware,” in 2012 IEEE 11th International Conference
on Trust, Security and Privacy in Computing and Communications.
IEEE, 2012, pp. 1161–1166.

[39] M. Pirker and D. Slamanig, “A framework for privacy-preserving
mobile payment on security enhanced arm trustzone platforms,” in 2012
IEEE 11th International Conference on Trust, Security and Privacy in
Computing and Communications. IEEE, 2012, pp. 1155–1160.

[40] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “Vc3: trustworthy data analytics in the cloud
using sgx,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 38–54.

[41] Y. Zhang, S. Zhao, Y. Qin, B. Yang, and D. Feng, “Trusttokenf: A
generic security framework for mobile two-factor authentication using
trustzone,” in Trustcom/BigDataSE/ISPA, 2015 IEEE, vol. 1. IEEE,
2015, pp. 41–48.

[42] R. Liu and M. Srivastava, “Protc: Protecting drone’s peripherals through
arm trustzone,” in Proceedings of the 3rd Workshop on Micro Aerial
Vehicle Networks, Systems, and Applications. ACM, 2017, pp. 1–6.

[43] X.-j. Cheng, K.-j. Cao, J.-n. Xu, and B. Li, “Analysis on forgery patterns
for gps civil spoofing signals,” in Computer Sciences and Convergence
Information Technology, 2009. ICCIT’09. Fourth International Confer-
ence on. IEEE, 2009, pp. 353–356.

[44] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful gps spoofing attacks,” in Proceedings of
the 18th ACM conference on Computer and communications security.
ACM, 2011, pp. 75–86.

[45] Y. Li, L. Zhou, H. Zhu, and L. Sun, “Privacy-preserving location proof
for securing large-scale database-driven cognitive radio networks,” 2012.

[46] S. Oh, T. Vu, M. Gruteser, and S. Banerjee, “Phantom: Physical
layer cooperation for location privacy protection,” in INFOCOM, 2012
Proceedings IEEE. IEEE, 2012, pp. 3061–3065.

[47] K. Dorling, J. Heinrichs, G. G. Messier, and S. Magierowski, “Vehicle
routing problems for drone delivery,” 2016.

[48] T. R. Jorris, “Common aero vehicle autonomous reentry trajectory
optimization satisfying waypoint and no-fly zone constraints,” DTIC
Document, Tech. Rep., 2007.

[49] D. Levin, Y. Lee, L. Valenta, Z. Li, V. Lai, C. Lumezanu, N. Spring,
and B. Bhattacharjee, “Alibi routing,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 611–624.

https://goo.gl/3NHNre
https://goo.gl/ZbQirw
https://goo.gl/JbpgST
https://goo.gl/EdxuJ9
https://www.thisiswhyimbroke.com/worlds-first-programmable-drone/
https://www.thisiswhyimbroke.com/worlds-first-programmable-drone/
https://goo.gl/TGq7Kg
https://goo.gl/vp3Xm3
https://goo.gl/vp3Xm3
https://goo.gl/72ebW1
https://goo.gl/NBECb5
https://goo.gl/3gK56T
https://goo.gl/BvXi61
https://goo.gl/BvXi61
https://goo.gl/tHUidL
https://goo.gl/vzqajc
https://goo.gl/MSMXiy
https://goo.gl/An9Xq6
https://goo.gl/An9Xq6
https://goo.gl/53ZVmy

	Introduction
	Background
	Unmanned Aerial Vehicle (UAV)
	Trusted Execution Environments
	OP-TEE

	System Model
	Physical Model
	Threat Model

	System Design
	Design Goals
	Protocol Overview
	Trustworthy Proof-of-Alibi
	Possible Traveling Range
	TEE Enabled GPS Sampling
	Adaptive Sampling

	Hardware and Implementation
	Hardware Platform
	GPS Driver & GPS Sampler
	Adapter

	Evaluation
	Field Studies
	Experimental Setup
	Airport Scenario
	Residential Scenario

	Benchmarks

	Discussion
	Limitations
	Cryptographic Operations with Long Keys
	GPS Spoofing Attacks

	Future Extensions
	3D Physical Model
	Arbitrary No-fly Zones
	Privacy-preserving Verification

	Related Work
	Drone Privacy
	Trusted Execution Environment
	Location Forgery
	Drone Routing

	Conclusion
	References

