SoK: History 1s a Vast Early Warning System:
Auditing the Provenance of System Intrusions

Muhammad Adil Inam*, Yinfang Chen*, Akul Goyal*, Jason Liu*, Jaron Mink*, Noor Michael*, Sneha Gaur®,
Adam Bates*, Wajih Ul Hassan'
*University of Illinois at Urbana-Champaign
TUniversity of Virginia

Abstract—Auditing, a central pillar of operating system se-
curity, has only recently come into its own as an active area of
public research. This resurgent interest is due in large part to the
notion of data provenance, a technique that iteratively parses audit
log entries into a dependency graph that explains the history of
system execution. Provenance facilitates precise threat detection
and investigation through causal analysis of sophisticated intru-
sion behaviors. However, the absence of a foundational audit
literature, combined with the rapid publication of recent findings,
makes it difficult to gain a holistic picture of advancements and
open challenges in the area.

In this work, we survey and categorize the provenance-based
system auditing literature, distilling contributions into a layered
taxonomy based on the audit log capture and analysis pipeline.
Recognizing that the Reduction Layer remains a key obstacle
to the further proliferation of causal analysis technologies, we
delve further on this issue by conducting an ambitious inde-
pendent evaluation of 8 exemplar reduction techniques against
the recently-released DARPA Transparent Computing datasets.
Our experiments uncover that past approaches frequently prune
an overlapping set of activities from audit logs, reducing the
synergistic benefits from applying them in tandem; further,
we observe an inverse relation between storage efficiency and
anomaly detection performance. However, we also observe that
log reduction techniques are able to synergize effectively with
data compression, potentially reducing log retention costs by mul-
tiple orders of magnitude. We conclude by discussing promising
future directions for the field.

I. INTRODUCTION

Auditing is one of the fundamental tenants of operating
system security [1]. Dating as far back as Anderson’s sem-
inal 1972 Computer Technology and Planning Study [2],
audit capabilities were identified as essential in any resource
sharing system to detect breaches and penetration attempts.
Lampson identifies the three pillars of his access control
“Gold Standard” as Authorization, Authentication, and Audit
[3]." When proactive security measures like authorization and
authentication fail, audit forms the basis for all forms of
reactive security, allowing system defenders to identify and
mitigate intrusions before they escalate.

In spite of its foundational importance, auditing has been
largely ignored in the system security literature — little at-
tention has been given historically to the design of efficient,
secure, and effective auditing mechanisms. As a demonstrative
example, the early 2000s saw the emergency of key OS

'Lampson’s “Gold Standard” plays on the fact that all three pillars of access
control begin with the letters “Au,” the chemical symbol for gold.

16

14 | [UsenixSec n
o 1ol CCS |
o [NDSS
g 10 - pm SOSP .
5 8| D osDI .
g o | = ATC i
2 4 Others

2

0

SO0 0S0 05 050,50,50,50,50,50,50,50,50,50,50 5050
PGB DDLU R0 R s e POV R

Publication Year

Fig. 1: Publication frequency for data provenance and system auditing
papers over the past two decades. Auditing, an operating system
security concept as foundational as access control and authorization,
is a subject of resurgent interest in the literature.

security mechanisms such as the NSA’s SELinux [4, 5] and
Linux Security Modules [6], which sparked a flurry of research
on the correctness of SELinux policies (e.g., [7-9]) and the
placement of LSM’s authorization hooks (e.g., [10-13]). Just
a few years later, Red Hat released the Linux Audit Subsystem
(LAuS) [14]; we are aware of no such efforts to specify secure
LAuS auditing configurations or validate its correctness, even
though LAuS was critical to Linux’s certifications under the
Common Criteria’s Control Access Protection Profile (CAPP)
[15] and Labeled Security Protection Profile (LSPP) [16].

In the present moment, however, our collective apprecia-
tion of auditing is beginning to change due to the failings
of proactive security. Increasingly sophisticated and well-
financed threat groups have demonstrated the ability to pen-
etrate networks, seemingly at-will (e.g., [17-23]). Following
their initial incursion, attackers can dwell for weeks or even
months without notice, steadily inflicting more damage to the
target [24]. That these attacks may take place over a period
of many months creates an opportunity for reactive security
approaches to detect and respond to intruders before they
reach their ultimate objectives. Thus, auditing and log analysis
techniques are more important than ever when defending
systems [25-28].

As a result of this reckoning, system auditing is experienc-
ing a well-deserved renaissance in the security literature. Fig-
ure 1 demonstrates this trend, plotting the number of system
auditing papers to have appeared at notable conferences over
the past two decades. As can be seen, the number of system

\ Used

WasTr ion:read
= Used
name:httpd main operation:read
type:Process

WasTriggeredBy name:htdocs/index.html
type:file

type:Process

WasTriggeredBy
Used

name:httpd worker| operation:read

type:Process

WasGeneratedBy

ame:172.67.74.
type:network

Fig. 2: Provenance graph represented in Open Provenance Model
(OPM) [29] of Apache webserver serving single user request. Ver-
tices represent the system subjects and system objects, while edges
represent the causal relationship between those entities.

auditing papers to appear between 2004 and 2014 is equal to
the number appearing in 2018 alone. This trend has largely
been driven by the notion of data provenance. Provenance
describes the totality of system execution and facilitates causal
analysis of system activities by reconstructing the chain of
events that lead to an attack (backward tracing) as well as
the ramifications of the attack (forward tracing). However, the
absence of a foundational system auditing literature, combined
with the deluge of recent results, makes it difficult to gain a
holistic picture of the state of the art of auditing. What are the
central challenges posed by system auditing, and what progress
has been made to overcome these obstacles?

In this work, we set out to answer these questions by
conducting a comprehensive systematization of the system
auditing literature. We focus our survey around recently-
reported results on data provenance techniques, allowing us to
understand how the notion of data provenance has shifted the
landscape of system auditing. Our survey identifies and tax-
onomizes data provenance related techniques within five lay-
ers of the auditing stack: Capture, Reduction, Infrastructure,
Detection, and Investigation. In so doing, we identify several
layer-specific and cross-cutting challenges, then discuss the
extent to which these obstacles have been addressed in prior
work, providing the first holistic picture of provenance-based
system auditing research.

Recognizing that the Reduction Layer represents a bottle-
neck to the further proliferation of provenance-based system
auditing, we continue our study by conducting an independent
comparative analysis of 8 exemplar log reduction techniques
using the DARPA Transparent Computing datasets. We find
that reduction performance can vary considerably based on
the workloads of the target machine. We also observe a ceiling
effect when attempting to apply these techniques in tandem;
the most aggressive technique (S-DPR [30]) reduces log size
by 87.3%, as compared to 90.7% when all techniques are
applied. Moreover, we uncover a disturbing trend in which
aggressive log reduction may lead to reduced anomaly de-
tection performance. Encouragingly, though, we observe sig-
nificant synergy between reduction techniques and traditional
data compression — while filtering provides up to 10.8X log
reduction and compression provides 22.8X, combined these
techniques provide 185.4X reduction, allowing analysts to

Detection Layer (III-D) Investigation Layer (III-E

Alert
. Alert Correlation [31, 35, Triage [31, 34,
[Heunstlc—based [31-36] [44_52] 35, 60-62]
. . . Log Integra-
Anomaly-based [37—43] Behavior Diagnosis [31, |l ;0135 44,
35, 53-59] 63-66]

N 7

-
Query Support [33, 65,

67-71]
\

-
Graph Compression [80—
84]

~
Storage Support [62, 70,
72-74]

Infrastructure
Layer (III-C)

—

Causality Approxima-
. tion [79, 85, 86]
Reduction Layer _

(ITI-B) e
Semantic Pruning [75-78]

t

p
Application level [63, 66,
98-101, 101-103]

Information Flow
Preservation [30, 79]

— b

\

Middleware level [104—

108]
Capture Layer

\
(III-A) .
Hypervisor level [87-90]

N
Kernel level [4, 5, 67, 72,
91-97]

— b

\

Fig. 3: We systematize provenance-based system auditing literature
based on a taxonomy of the log capture and analysis pipeline.

store years worth of logs in the space originally consumed
by just a few days. We conclude by discussing our findings in
the context of future directions for the field.

II. DATA PROVENANCE PRIMER

Auditing captures documentary evidence of the events that
took place on a target system.” Today, most operating systems
come with auditing frameworks, such as the Linux Audit
Subsytem [91], Event Tracing for Windows (ETW) [109], and
FreeBSD’s DTrace [110]. These frameworks use audit hooks
and system call interception to monitor accesses between
system subjects (e.g., processes) and system objects (e.g.,
files, sockets, pipes, etc.). Configured properly, audit logs can
contain enough information to establish what events occurred
on the system and how and who caused those events [111]. Au-
diting thus complements purely post-mortem forensic methods
such as disk [112], memory [113], and malware analysis [114].

Historically, inspection of these logs has been tedious
and error prone, involving long series of join statements to
retrieve the relevant log entries from a relational database.
To address this, recent literature has leveraged the notion
of data provenance, a simple example of which is given
in Figure 2. Rather than manually piece together individual
pieces of evidence from raw logs, provenance-based systems
can construct dependency graphs that explain the relationships
between each event, simplifying the detection and investiga-
tion of attacks. Using these graphs, analysts can issue graph

2Qur focus in this work is on auditing hosts/endpoints for evidence system
intrusions. We note that, more broadly, auditing relates to a variety of other
security topics such as cryptocurrencies electronic voting, which are out of
scope in this work.

traversal queries to quickly identify the root causes of an attack
(backtrace queries) or the impact of an attack (forwardtrace
queries). A growing body of evidence seems to suggest that
understanding the historical context of attacks is essential
to addressing the shortcoming of current security products
[31, 31, 34, 35, 51, 52, 62, 115, 116].

III. PROVENANCE-BASED SYSTEM AUDITING

In this section, we explore the literature on provenance-
based system auditing. We organize contributions into five
distinct layers according to the pipeline through which au-
dit logs are collected and analyzed: 1) the Capture layer
generates individual audit log records in various software
architectures; 2) the Reduction layer eliminates extraneous
information in the audit logs to improve storage, analysis,
and query efficiency; 3) the Infrastructure layer processes
and manages voluminous audit data; 4) the Detection layer
performs automated analysis of audit data to search for indi-
cators of attack; and 5) the Investigation layer exposes an
interface for analysts to effectively inspect and interpret audit
data. A visualization of this pipeline can be found in Figure
3. As some papers describe multi-layered or even end-to-end
auditing systems, we decompose these works into individual
contributions, discussing each in the appropriate subsections.

A. Capture Layer

The quality of security investigations depends on the collec-

tion of ample evidence, including the capture of raw streams
of audit events. Typically, digital forensics entails extract-
ing evidence from non-cooperative artifacts such as memory
snapshots (e.g., [117]), or storage disks (e.g., [112]). The
capture of audit logs is thus a peculiar tool in the forensic
analyst’s toolkit, as it is a runtime activity that must be
configured in advance on a cooperating machine. However, not
all audit streams are created equal — the vantage point used
for auditing impacts the granularity of evidence and even the
conclusions reached by analysts. Further, different approaches
to log capture affect the security and deployability of the entire
auditing pipeline.
Hypervisor-level Monitoring. In hypervisor-level monitor-
ing, the target host is contained in a virtual machine while
being audited by a virtual machine monitor (VMM). Such
approaches are based on virtual machine introspection — when-
ever a guest application invokes an auditable event, the VMM
examines the virtual machine’s state, extracts the relevant
event context, and generates a log event. The Backtracker
system [87] is not only among the first hypervisor-level
auditing frameworks, but also the first demonstration of data
provenance as a means of investigating system intrusions. In
Backtracker, both the event logging and the provenance graph
generation components are present in the hypervisor.

More recent hypervisor-based approaches have taken advan-
tage of the ease with which record-and-replay (RR) techniques
can be embedded in VMMs [89, 90]. Most notably, Ji et
al. [88] leverage this approach to enable replay of instruction-
by-instruction execution of a virtual machine and collect high-

fidelity data provenance. A key advantage of this approach is
that, beyond the trace necessary to produce the replay, runtime
auditing is not needed in an RR system; instead, analysts can
extract evidence of the intrusion in a post hoc fashion at any
level of granularity they wish.

Kernel-level Monitoring. In kernel-level monitoring, audit
logs describe accesses to data entities using operating system
abstractions such as processes, files, and network sockets.
Because these objects are universally employed by higher
software layers, kernel-level auditing provides a broad, system-
wide perspective to the events on the system.

Kernel: System Call API. Commodity auditing frameworks,
particularly the Linux Audit Subsystem (LAuS) [91] and Event
Tracing for Windows (ETW) [92] provide capture services
for many of the papers we discuss in the higher layers of
the pipeline (e.g., SPADE [72]). LAuS primarily monitors
the system call interface, creating a new log entry when a
system call attempt matches one of its configurable auditing
rules. LAuS and other commodity auditing frameworks were
designed with consideration for the Common Criteria [15, 16]
and other certifications, leading to certain features such as
the ability to audit failed access attempts. To improve on
the overheads of commodity audit frameworks, Ma et al.’s
ProTracer [118] leverages custom instrumentation to perform
targeted provenance capture of security-sensitive system calls.
We note that the syscall API is not the only valid interface over
which to audit the kernel. For example, Muniswamy-Reddy et
al.’s influential PASS system [93, 94] instruments the virtual
file system interface. Because the file abstraction is used as
the basis for nearly all kernel services in UNIX systems, this
approach grants similar insight into system events.

Kernel: Security API. Another promising approach within
the kernel layer is to employ the security interface (e.g., LSM
[6]) for auditing purposes. A key advantage of this approach
is that the security interface has already been the subject of
extensive scrutiny to verify that it can be used to mediate all
security-sensitive operations to controlled data types within
a system [10-13]. Thus, auditing this API inherits these
assurances of completeness. Further, such systems facilitate
“whole-system” provenance collection; this is because the
security subsystem is invoked earlier in the boot sequence than
userspace syscall auditing, facilitating the capture of a fully-
connected provenance graph where all system activities can
be traced back to init. A notable downside, however, is that
the security interface is unable to reliably audit failed access
attempts because it is is invoked after argument validating
and discretionary access checks have already occurred. Audit
streams at this interface may also be more difficult for analysts
to interpret in comparison to the better-known POSIX APL

Many security modules, like SELinux’s Access Vector
Cache [4, 5], already provide basic auditing services to help
administrators debug and interactively improve security pol-
icy. The notion of provenance monitors, a provenance-aware
system that satisfies the reference monitor concept [2], was
first proposed by McDaniel et al. [95] and explored in Pohly
et al.’s Hi-Fi [96] system. Bates et al. [97] generalized this

N
& o F & 5 2
S 52 | .2 § | £y § 5%
g AN £5 A L 28 55 g
55 S5 S5 |58 § 5 |§f £8 2% §5¥%
§s £ O [0 & L o |2f §& a5 S8
Capture Level Exemplar Systems Deployability Security Forensic Capabilities
Hypervisor BackTracker [87] o - - % Low
Kernel: Syscall LAuS [91] - -) x % % Low
Kernel: Security SELinux [4], LPM [97] [)) - © b3 Low
Application BEEP [98], Omegalog [63] - [)) - X X b3 b3 High
Middleware Scippa [104] o - - b3 X Med.

TABLE I: Comparative evaluation of the potential deployability properties, security properties, and forensic capabilities of different

provenance-based system auditing capture mechanisms. @ or
property, and — or ¥ denotes that the property is not satisfied.
in the literature.

approach in Linux Provenance Modules (LPM) and provide
additional tamperproofing and mediation features including a
secure boot sequence, authenticated networking, and attested
disclosure of audit streams from higher levels. Pasquier et al.’s
Camflow system [67] replicates these approaches and demon-
strates a higher-performance and easier-to-maintain model for
provenance capture in the kernel.

Application Level Monitoring. Auditing at lower levels can
paint an imprecise or incomplete picture of system execution.
For example, system logs suffer from dependency explosion
[98] — due to the opacity of internal process activities, each
process output event must be assumed to be causally dependent
on all preceding inputs, leading to false dependencies in the
provenance graph. Using the application layer such issues can
be addressed by integrating (or layering [63, 94, 97, 119])
system and application telemetry data.

A common approach to application monitoring is to in-
strument the programs of interest with custom audit capa-
bilities. While early work suggested that developers could
annotate their own programs with custom provenance li-
braries [120, 121], efforts shifted towards semi-automating
the instrumentation process through program analysis. Lee
et al.’s BEEP system [98] mitigates dependency explosion
through decomposing the log activity of long-running event-
based processes into autonomous units of work. Through
observation of training runs of a program, BEEP is able to
automatically identify the main event handling loop of the
process, then instrument it with event logging such that the
program explicitly declares when a new execution unit is
beginning. Ma et al. propose MPI [99], a complementary
technique that can perform execution partitioning over high-
level data structures (e.g., browser tabs) when event handling
loops are not present, but requires the user to annotate such
data structures in source code. Beyond execution units, it is
possible to extract additional application state of interest; for
example, Inam et al. [103] leveraged program transformation
to audit an applications’ security-sensitive configuration fields
in memory.

Ideally, it would be possible to extract the necessary in-
formation from the application level without depending on
instrumentation. Ma et al. [102] observe that execution units
can often be inferred by observing the log outputs of an
application. Kwon et al. [100] develop an alternate modeling-

denotes fully satisfying the property, © denotes conditionally satisfying the
indicates that evidence for or against the property is not presently available

based inference technique through the use of lightweight dual
execution [122] to differentiate sequences of system calls with
different inter-dependencies. Hassan et al. [63] demonstrate
that execution units can be identified through static analysis
of the existing event logging callsites in application binaries.
The opacity of system logs is especially apparent in desktop
applications such as web browsers and windowing systems.
Yang et al. [66] propose a user interface based execution
partitioning scheme correlates system calls and individual Ul
elements and events. To improve forensic analysis in the
context of browser-based attacks, Li et al. [101] design a
mechanism that captures fine-grained details pertaining to the
execution of JavaScript within the browser, such as navigation
events and changes to the DOM.
Middleware Level Monitoring. Application level monitor-
ing helps to address many of the limitations of pervasive
system logging, but typically depends on assumptions about
application instrumentation (e.g., developer annotations [99]),
type (e.g., browser-based [101]), or behavior (e.g., contains
logging statements [63]). In contrast, middleware level mon-
itoring can often strike a balance between invasiveness and
precision when auditing. Android middleware has been in-
strumented to trace [104] and even authenticate [105] inter-
app communication to prevent confused deputies and diagnose
device disorders. Similar to the trend noted above, Android
middleware telemetry is often integrated [106, 107] with low-
level system call metadata [123] to improve forensic capabili-
ties. Middleware level monitoring has also been proposed as a
method of holistic audit for the Internet of Things [108]. While
we are not aware of any studies that investigate dependency
explosion in middleware, it stands to reason that middleware
events could be used for execution partitioning in a manner
similar to Yang et al.’s Ul-based scheme [66].

Challenges at the Capture Layer

Table I summarizes capture layer challenges.
Deployability. While higher layers of the auditing pipeline
are largely system agnostic, the capture layer must consider
the invasiveness and costs of system modification. We cluster
host, operating system, and middleware modifications together
as “Platform Modifications” to reflect their similar deployment
costs; while lower-level approaches are typically associated
with platform modification, the availability of commodity

kernel auditing frameworks such as LAuS and SELinux offer
visibility into system events while only requiring changes to
system configuration. Similarly, higher-level approaches often
depend on program modification (e.g., BEEP [98]), although
we note a promising trend in which this information can
sometimes be transparently inferred (e.g., Omegalog [63]).
Security. We evaluate the security of audit capture mecha-
nisms based on the extent to which they satisfy the reference
monitor properties [2] of complete mediation, tamperproof-
ness, and verifiability. Due to community efforts in the ver-
ification of LSM authorization hooks, we are confident that
auditing at the Security API provides complete mediation (or,
in this case, observation) of security-sensitive events in the
system; therefore, a VM introspection system can also satisfy
complete mediation (i.e., place watches on the authorization
hooks). While it stands to reason that syscall (e.g., POSIX) or
middleware (Android Permissions API) could also satisfy the
complete mediation property, we are not aware of any formal
demonstration that this is the case. In contrast, application
level auditing cannot provide complete mediation.

When evaluating tamperproofness, we consider whether an
audit framework or its logs can be manipulated/disabled by an
adversary with root privilege. While hypervisor exploits are
periodically discovered, hypervisor level auditing as a design
concept is tamperproof, as is Security API auditing when
deployed on a hardened least-privilege kernel (e.g., [97]). The
same cannot be said of syscall auditing, where root privilege
is usually sufficient to control the auditing subsystem. In
fact, anti-forensic tampering of system logs is a widespread
phenomenon [124], and it has recently been demonstrated that
these records can be manipulated in memory [124] before
tamper-evident protections (e.g., [74, 125, 126]) can be ap-
plied on disk. Middleware and application level auditing are
also vulnerable to general tampering, and have recently been
demonstrated to be subject to execution repartitioning [127]
attacks in which a compromised program may equivocate
about unit boundaries to confuse investigators.

We also consider whether different capture methods can
be verified to audit the necessary security-sensitive events
in a tamperproof/tamperevident manner. Verification entails
that target implementation satisfies a high-level design spec-
ification; as such, we are aware of very little evidence in
the literature supporting verifiable audit properties. At the
Security API, Bates et al. demonstrate a policy-based auditing
technique that can produce a minimally complete provenance
graph for a target application [77, 128]. Their approach
analyzes the system’s SELinux type enforcement policy to
determine which system entities may (in)directly influence the
target application. At the Syscall API, LAuS has been certified
as part of Linux’s Common Criteria profiles (CAPP [15], LSPP
[16]), but the requirements of these certifications fall short of
reference monitor guarantees.

Forensic Capabilities. Finally, we highlight the forensic
capabilities of different capture methods. Whole-system prove-
nance depends on the audit mechanism being initiated prior
to the first user space process, so it can be provided at the

hypervisor or Security API, but not at commodity syscall
auditing frameworks. However, capture approaches up to the
middleware level support inter-process tracing of user space
programs. Conversely, higher-level approaches provide deeper
insight into program behaviors. Execution unit partitioning
can consistently be achieved at the application level, and at
times attainable within middleware. Beyond execution parti-
tioning, richer forms of application-specific semantics can only
be audited within the applications themselves. The forensic
capabilities of different capture methods have a direct impact
on the semantic insight of collected logs. While lower level
approaches (hypervisor and kernel) offer a broad view of the
system activity, they suffer from a notable semantic gap —
the captured logs lack descriptions of higher-level application
behaviors that are often pivotal to attack reconstruction. On
the other hand, while higher level approaches do reduce the
semantic gap, they often suffer from high deployability costs.

B. Reduction Layer

Audit frameworks are known to generate an enormous
volume of logs, upwards of of gigabytes per day on a single
machine [78, 97], posing serious storage and management
challenges. At times, this creates a “needle-in-a-haystack”
problem for analysts as they sift through extraneous log
data searching for real evidence. Often, though, log volume
ironically leads to the destruction of key evidence; companies
are forced to purge old logs just days after their capture before
an intrusion has even been detected [129, 130]. Prior work has
attempted to develop techniques that reduce log size while
retaining relevant forensic evidence.

Graph Compression. Generic compression tools, while
useful for cold storage, do not retain logs in a queryable
format and thus are not ideal for real-time investigations.
The earliest reduction work in the provenance community
sought to address this problem through the development and
application of graph-specific compression schemes. Xie et
al. [81-83] and propose adaptations of web graph compression
and dictionary encoding schemes to provenance graphs. In
their work, they leverage the web graph compression schemes
and adapt them in the context of provenance graphs. Similarly,
Ding et al. [131] leverage DNN based methods to learn optimal
character encoding for audit events. As Xie’s techniques were
offline/batch-based, Ahmad et al. extend these approaches
to streaming settings [80]. Most recently, Fei et al. adopt
the data mining notion of Query-Friendly Compression to
provenance graphs [84]. These compression techniques are
able to reconstitute a lossless representation of the log, but
add decompression latency and do not solve the “needle-in-a-
haystack” problem.

Semantic Pruning. As the notion of provenance-based
auditing took hold in the security community, the research
observed that much of logs’ contents described application
activities that would never be of use in an investigation.
Semantic pruning techniques aim to leverage the knowledge
of application behaviors to filter out these events from the
log. Lee et al’s LogGC system performs graph analysis to

identify and prune temporary file I/O and other “dead end”
application activities [75, 118], reasoning that dead events that
do not inform the current state of the system are not useful
in investigations. Ma et al.’s KCAL [78] framework featured
a kernel-level cache to remove redundant causal events and
reduce the overhead of log transfer from kernel to user-space.
NodeMerge [76] builds on the observation that applications
often load dozens of files at launch that are globally read-only
(e.g., shared object libraries); allowing them to be reduced.
Rather than pruning based on a general application behavior,
Bates et al.’s ProvWalls [77] examines an application’s security
policy to determine the subjects and objects on the system that
form its Trusted Computing Base (TCB), then prune all events
that fall outside the TCB.

Information Flow Preservation. Beyond log events de-
scribing forensically-irrelevant application activities, an even
greater source of overhead in logs is their sheer redundancy
— applications consistently issue hundreds or thousands of
repetitive system calls when performing I/O, far more than
is necessary to accurately determine a causal link between
entities. Information flow preservation seeks to address this
redundancy by retaining only those log events that are nec-
essary to produce an accurate information flow graph of
system execution. Xu et al. propose this concept in their
Causality Preserving Reduction (CPR) system [79]. Rather
than naively eliminate every repeated system call between
a source and destination entity, CPR tests for interleaved
flows, i.e., whether any new inputs have been received at
the source between the two system calls. An interleaved flow
indicates that the system call may not actually be redundant
and thus should be preserved. Ma et al’s ProTracer [118]
accomplishes a similar effect to CPR at the kernel level by
alternating between taint analysis and logging. Hossain et al.
further relax the assumptions of information flow preservation
in their Dependency Preserved Reduction (DPR) systems [30].
Rather than preserve a full flow graph, DPR reasons that a
reduced flow graph is sufficient as long as it can identify
the same entities as the full graph when queried. To achieve
this, the DPR systems selectively drop flow events that are
not necessary to correctly traverse every entity’s ancestors (S-
DPR), or ancestors and successors (F-DPR). Thus, while the
events that causally link the entities involved in an intrusion
may be lost, an analyst is still able to correctly identify all of
the implicated entities.

Causality Approximation. Beyond information flow preser-
vation, a variety of systems have attempted to apply bounded
approximation of audit logs, accepting some loss of accuracy
in exchange for space efficiency. Xu et al.’s Process-centric
Causality Approximation Reduction (PCAR) [79] extends the
CPR system, aggressively eliminating redundant events (even
for interleaved flows) when a “bursty” process exceeds some
number of system calls per second. Hassan et al. propose Win-
nower, a framework for summarizing the provenance graphs
of hundreds or thousands of replicated cloud applications
using Deterministic Finite Automata (DFA) induction [85].
To account for non-determinism and other low-level variations

a o
0wy 2K
o 50 5.9
$y 8% 53|57 55 £F
SsE F& 8|85 &5 S8
S A9 9 5 & o
Technique System Forensic Validity Analysis Costs
Generic @] @] O x x Local
Compress. .
Web+Dict [82] O O O b 4 Local
SEAL [84] ') ° ') x Local
: LogGC [75] [[) O x Local
Pruning.
NodeMerge [76] (] [O Local
ProvWalls [77] [] [] O X Global
CPR [79] I8 P 0 x Local
Preserve.
DPR [30] O [] O X Global
PCAR [79] 0 P P % Local
Approx. §
Winnower [85] © ® o Global
LogApprox [86] © [[Local

TABLE II: Comparative evaluation of the potential forensic validity
concerns and analysis costs of reduction layer techniques. The
remaining reduction layer challenge, storage efficiency, is explored
at length in Section IV.

between application instances, they define a set of heuristics
for abstracting process, file, and socket labels. Michael et al.
propose a similar approach to efficiently summarize repeated
executions of the same program on a single host. Their
system, LogApprox [86], performs bounded regular expression
learning over file I/O events such that typical behaviors are
approximated while atypical behaviors are losslessly retained.

Challenges at the Reduction Layer

Table II summarizes reduction layer challenges.

Storage Efficiency. The goal of the reduction layer is to
reduce the costs of storing and managing audit logs. Unfor-
tunately, our understanding of storage efficiency is primarily
based on self-reported findings by each system’s authors.
These results are often based on custom or closed-source
datasets, making it difficult to compare the storage efficiencies
of different systems or assess the general applicability of each
approach. To address this shortcoming, we have independently
re-implemented and evaluated a representative set of 8 exem-
plar reduction techniques against public datasets. We report
our findings in Section IV.

Forensic Validity. Forensic validity was proposed by
Michael et al. as a means of measuring the security utility
of a reduced audit log [86]. They define metrics that can
be used to evaluate log utility against specific attacks, but
it is unclear whether their findings generalize to all forensic
scenarios. Instead, we use the term here to describe general
sources of context that may be stripped from the provenance
graph by the reduction technique: node loss, edge loss, and the
loss of any other source of non-structural graph information
(i.e., attributes). As can be seen, semantic pruning techniques
are associated with node and edge loss, which may undermine
forensic validity if an attack relates to the application behaviors
targeted by the technique. For example, the original LogGC
implementation pruned network activity from closed sockets,
suggesting that key evidence be lost in the case of data
exfiltration attacks. In contrast, information flow preservation
techniques only incur edge loss. However, the implications for

forensic validity are system-dependent — while CPR only drops
“redundant” flow events, the DPR systems may drop unique
flow events which fully severs the causal relation between
two entities. Causal approximation techniques often “merge”
distinct causal events together, resulting in the loss of certain
causal attributes in the graph. For example, PCAR merges mul-
tiple information flows between the same two entities, obscur-
ing the happens-before relations between events. LogApprox
even merges flows to or from related data entities, such as
files in the same directory, resulting in coarser-grained causal
attribution. Regardless of the reduction technique, it can be
difficult to reason about the tradeoff between space efficiency
and forensic validity because it depends on assumptions about
the suspected attacker’s low-level behaviors.

Analysis Costs. A variety of performance considerations
dictate the practical deployment of reduction techniques.
While generic compression is advantageous for its ability to
losslessly reproduce the provenance graph, its main drawback
is the difficulty of querying the reduced log at rest. The
latency associated with decompression is a serious throughput
concern when analysts are attempting to react to an in-progress
attack, especially because a portion of analyst queries to the
log fit a random access profile [62]. A number of systems
require training runs in order to function, which suggests
ongoing administrative costs to ensure that their models of
system activity stay up-to-date. As a coarse-grained measure of
computational complexity, we consider whether each reduction
technique can be applied to local/streaming graph segments or
requires a global computation. As can be seen, there is no trend
between technique categories and computational complexity.
It is necessary for techniques to have reasonable throughputs
and be applicable locally in order to scale, which is the central
focus of the next layer.

C. Infrastructure Layer

The infrastructure layer is responsible for the storage and
management of provenance and audit log data, making it ac-
cessible to the upper layers of the analysis pipeline. Compared
to other layers, the infrastructure layer is particularly benefited
by generic research on big data and distributed systems. Here,
however, we focus on work that leverages the unique character-
istics of audit and forensics to improve infrastructure support.
For brevity, we have inlined our discussion of challenges.
Query Support. Provenance graphs pose an interesting prob-
lem for data querying — because analysts are often interested
in the root causes of events, access patterns do not necessarily
exhibit structural or temporal locality. As a result, relatively
simple queries have been known to take days to return when
processed by generic database management systems [68]. Prior
work has attempted to reduce time-to-insight through the
design of improved provenance query engines and interfaces.

Query Engines. If knowledge about attack patterns can
improve space efficiency at the reduction layer, perhaps it
can also improve query efficiency. Liu et al. propose such
an approach in their PrioTracker [68] system, an intelligent
graph traversal algorithm that prioritizes paths likely to lead to

attack events. PrioTracker selects rare paths for further traver-
sal based on a reference model of typical system behavior,
and also de-prioritizes breadth searches of high-fanout nodes,
to dramatically reduce query latency to disk-based graphs.
However, intelligent traversal also suggests a new class of
anti-forensic attack — an intruder patterns their behavior such
that it falls on de-prioritized search paths — the feasibility of
which has not yet been investigated. Hossain et al. demonstrate
an alternate approach, Morse [33], which uses information
flow tag propagation to produce consise responses to graph
queries about attack behavior. Morse associates entities in the
causal graph with information flow tags that assert their con-
fidentiality and/or integrity states, then defines rules about the
propagation and decay of tags within the graph to deprioritize
unrelated benign activities during graph traversal.

Inspired by vertex-centric graph processing systems, Pasquir
et al. present CamQuery [69], a mechanism that permits pre-
compiled queries to be applied to provenance graphs in real
time as they are constructed. By creating a streaming graph
query engine, the CamQuery system is able to collapse the log
capture and analysis pipeline such that query can be embedded
within endpoint capture agents (e.g., a Linux Security Mod-
ule). Inlining provenance capture and analysis also suggests
a practical model for the deployment of provenance-based
access control (e.g., [132-136]) at the operating system layer,
although to our knowledge this has not been investigated.
In concurrent work, Gao et al. propose SAQL [71], another
non-vertex-centric streaming audit querying that offers more
flexible multi-event support. Unfortunately, by their very na-
ture forensic queries cannot be pre-compiled; as a result, this
approach is amenable to detection and authorization but cannot
improve query latency for post-mortem investigations.

Query Interfaces. While most analyst depends on relational

(e.g., SQL) or graph (e.g., Cypher [137]) query APIs to
access log data, research has also explored the design of
specialized query interfaces for audit analysis. The CamQuery
[69] system, discussed above, defines a custom language for
expressing pre-compiled queries over system provenance. For
forensic tasks, Gao et al. proposes domain-specific languages
for querying attack behaviors [65, 70, 71], enabling analysts to
retrieve multi-event log data by expressing sophisticated sets
of contraints over event patterns and inter-event depencies. For
example, in an APT intrusion exercise Gao demonstrates that
AIQL can be used to detect exfiltration attempts by calculating
a per-process moving averages of data transfers or forward
track system activity for malware ramification [70].
Storage Support. Access performance for audit data is also
dependent on the underlying storage structure. Prior work has
leveraged the unique properties of audit data to improve on
the performance provided by off-the-shelf solutions.

Data Model. Relational data models are poorly suited for
storing audit data; in order to trace through a sequence of
events in a relational model, analysts are forced to iteratively
join an ever-expanding list of records together that represent
connected graph components [138]. As a result, graph-based
data models such as Neo4j [139] have been a popular op-

tion for provenance data stores (SPADE [72], LPM [97]).
Unfortunately, general graph data models quickly struggle to
support causal analysis; the access patterns of forensic queries
lack the temporal and structural locality properties common to
graph processing workloads (e.g., social networks). To address
these shortcomings, specialized audit storage models have
been proposed in the literature. Gao et al.’s AIQL system uses
spatial and temporal properties of the audit log to partition
data, reducing query latencies because related records can be
retrieved in fewer data seeks [70].

Storage Backends. Regardless of data model, audit logs can
either be stored on disk or in memory. Disk-based approaches
(e.g., [34, 68]) suffer from significant I/O overheads, resulting
in hours to respond to a single query at times [62], potentially
delaying attack investigations. In contrast, while in-memory
storage (e.g., [36, 97, 140-142] can largely mask query
latencies to forensic analysts, the unwieldy size of provenance
graphs on a long-running system can make this approach
impractical. Based on analyzing the access patterns of prove-
nance graph processing, Hassan et al. propose a hierarchical
storage system for audit data [62]. Their approach leverages
two in-memory event pools, one of which caches recent events
to exploit the temporal locality of graph construction while
the second retains the most suspicious events according to an
anomaly scoring algorithm.

Distributed Storage. Attackers destroy logs after compro-
mising a machine [28], underscoring the importance of repli-
cating and distributing audit data. In most enterprise networks
today, log data is transmitted by endpoints to a centralized
storage server, leaving a single point of failure in the event of
an attack. In contrast, Gehani and Lindqvist’s Bonsai system
provides distributed storage of provenance graphs for faster
analysis, including a replication scheme to prevent partial loss
of the graph as a result of offline nodes [143]. One challenge
when storing audit data in a distributed fashion is the need to
authenticate log/graph data when it is accessed [136]. Gehani
and Kim’s Mendel builds on the Mendel approach to support
distributed storage across multiple trust domains by efficiently
verifying subgraphs of the reconstituted graph as they are
traversed in queries [73]. More recently, Paccagnella et al.’s
Custos system simultaneously replicates logs as it verifies
them for tamper-evidence in near-real-time through use of an
SGX-based decentralized challenge protocol [74].

D. Detection Layer

The Detection Layer in the provenance-based system au-
diting pipeline is responsible for analyzing audit streams in
an automated fashion in order to alert analysts to potential
threats. Based on detection techniques, host intrusion detection
can be broadly classified into two categories as heuristic-
(or rule-) based and anomaly-based detection. Unlike whole-
system intrusion detection, malware detection works in the
context of a single program where program samples are
typically analyzed in sandbox environments [144-147] for
extracting signature-based [148, 149], or behavior-based [150-
154] features. Signature-based schemes inspect program code

and data for evidence of malware signatures, but struggle to
detect previously-unseen samples (0-days) or obfuscated mal-
ware. Alternatively, behavior-based schemes observe program
behaviors (execution paths, system calls, etc.) with monitoring
tools and are able to detect obfuscated malware as well. Below,
we consider how two classic approaches to host intrusion
detection, heuristic- (or rule-) based and anomaly-based, have
grown to incorporate data provenance and causal analysis in
recent years.

Heuristic Detection. Heuristic detection approaches lever-
age existing or anticipated knowledge of attack behaviors to
define event matching rules, which are then matched against
the audit stream to detect attacks. Today, most Endpoint
Detection & Response (EDR) products employ a heuristic
approach, using rules based in part on the MITRE ATT&CK
knowledge base of attacker Tactics, Techniques, and Proce-
dures (TTPs) [155]. Recent work has considered how to adapt
EDR-like event matching rules to causal graphs. Milajerdi
et al’s HOLMES system defines a set of graph matching
rules based on TTPs related to advanced persistent threat
(APT) behaviors [31]. When multiple alerts are fired from
the same event stream, HOLMES is then able to construct a
high-level scenario graph describing the attacker’s behavior.
Hossain et al. define TTP-like rules in their SLEUTH system,
with the added constraint that these rules only fire when certain
confidentiality or integrity conditions are satisfied according to
a tag-based information flow propagation system [36]. Rather
than constructing graph patterns to match TTP’s, Milajerdi et
al. also demonstrate that these event patterns can also be pro-
cedurally inferred from the text in Cyber Threat Intelligence
(CTD) reports [32]. Bridging the gap between legacy EDRs
and causal graph analysis, Hassan et al.’s NoDoze [34] and
RapSheet [35] systems accept alerts fired by existing TTP
rulesets, then perform causal analysis to assess the severity
of the alerts. In contrast to the process-centric rules of legacy
EDRs, a potential advantage of graph-based heuristic detection
is the potential to express more complex matching rules that
span multiple processes in the graph structure.

Anomaly Detection. Rather than speculating about the
nature of future attacks, anomaly-based detection defines a
model of typical system behavior based on historical log data,
raising an alert if execution deviates significantly from this
model. Anomaly detection is also a classic approach to a
variety of security tasks that has more recently been applied
to causal graphs. One challenge with anomaly-based detection
is converting complex and arbitrarily large graphs into fixed-
length vectors that can be used for modeling. Manzoor et
al.’s Streamspot demonstrates a viable cluster-based modeling
approach [39]. In Streamspot, a label is created for each node
based on a local graph traversal, then converted into multiple
fixed-length chunks. All graph chunks are then hashed to
produce a fixed-length binary vector in a manner that preserves
cosine similarity, then summed together to describe the entire
graph. Han et al.’s Unicorn [38, 40] also visits each node to
create a label but uses these labels to produce a histogram
description of the graph that is then hashed into a fixed-

[
<
< S .
s3 a3 v £ &
KT Pg |TF E‘ _éy) =
Type 1 |Type 2 g 35 »:E'o
Technique Systems Detection Error Explainability
Heuristic Legacy EDR [34, 35] [) © ® - -
Prov EDR [31, 36] [] © - @ -
Anomaly | Whole Graph [38-40, 158] | © [] - - @
Path-based [37, 157, 159] © [] - @ -

TABLE III: Comparative evaluation of detection layer techniques.

length vector that preserved Jaccard similarity [156]. Unicorn
also uses an evolving graph model to account for changes to
benign system activity over time. Wang et al. suggest that a
potential issue with the above techniques is that they attempt
to describe all system behavior, resulting in a noisier model
that may advantage attackers. Their ProvDetector [37] system
addresses this by first downsampling the causal graph to a
limited number of paths based on an out-of-band anomaly
scoring algorithm [34]. ProvDetector also adapts doc2vec and
Local Outlier Factor (LOF) as the embedding model and
learning models, respectively. Similar to [37], Xie et al.’s
PIDAS [157] assigns an anomaly degree to each path within a
provenance graph to identify intrusions. PIDAS-Graph [158]
extends PIDAS and calculates the anomaly degree of the
whole provenance graph to detect intrusions that are described
in multiple paths. More recently, Xie et al. proposed P-
Gaussian [159] that uses a gaussian distribution scheme to
additionally detect variants with transformed intrusion be-
havior sequences. Recent work has also shown that causal
graph learning is effective at detecting specific attack behaviors
such as malware installation [41]. While our focus here is on
causal graph anomaly detection, we note the rich literature of
sequence-based log analysis, including recent works such as
DeepLog [42] and DeepCase [43].

Challenges at the Detection Layer

Table III evaluates detection layer challenges.
Detection Error and Overhead. Detection error continues
to undermine intrusion detection systems as they move to
causality-based approaches. We evaluate these systems based
issues related to Type 1 (i.e., False Negative) and Type 2 (i.e.,
False Positive) errors. Anomaly-based approaches are better
positioned to detect wholly unanticipated 0-day attacks that
are not contained in heuristic knowledge bases. Conversely,
Heuristic-based approaches are capable of detecting known
attack patterns with precision. In practice, we would expect
either technique to provide some detection capability against
either attack type; this is because 0-day attacks will likely be
partially comprised of known attack patterns, while known at-
tacks will likely be partially comprised of behaviors that devi-
ate from normality. Historically, both heuristic- and anomaly-
based detection systems are prone to high rates of false
positives, creating threat alert fatigue problems for analysts
[160]. Whether causality-based detection suffers from these

problems has not been investigated, although it seems a likely
possibility. Regarding detection overhead, while these systems
are typically designed for streaming/evolving (e.g., [38, 39])
settings, offline detectors (e.g., [34, 37]) may induce high
detection latency.

Explainability = The explainability of machine learning out-
puts is of increasing concern in the Al community [161].
In this context, explainability refers to a detection model’s
ability to explain to an analyst the circumstances that caused
it to raise an alert. When considering the frequency of false
alarms in detection models, explainability is key to helping
an analyst quickly investigate (or dismiss) an alert. Although
provenance graphs offer an intrinsic explanation of system
activity, a detection model that returns an entire system graph,
perhaps comprised of millions of nodes, is too coarse-grained
an explanation. As heuristic-based approaches are defined
based on reasonable small event patterns, it is simple for these
detection models to return a small provenance subgraph that
explains the context of the alert. Current work on anomaly-
based detection has primarily focused on graph classifica-
tion, offering poor explanations for alarms. Systems which
downsample the whole graph [37, 159], offer a reasonable
trade-off between these extremes because they can isolate the
anomalous activity to just a handful of paths in the graph.
We note that explainability is not an innate limitation of
anomaly-based approaches; if future work investigated node
classification within causal graphs, it would be able to offer
finer-grained explanations similar to heuristic approaches.

E. Investigation Layer

The investigation layer enables the analysts to perform
threat alert validation and post-mortem analysis of incidents.
These tasks are related to, and at times interdependent on,
complementary approaches such as memory forensics (e.g.,
[162, 163]) or disk forensics (e.g., [164, 165]). Memory
forensics acquires and explores the semantic contents of in-
terest from volatile memory, whereas disk forensics entails
extracting forensic information from digital storage media.
The analysis of volatile memory provides valuable live ev-
idence during forensic investigations, and is typically easier
to perform compared to disk analysis that can be hindered
through data encryption [166, 167]. At times, the evidence
being extracted may in fact be fragments of log events (e.g.,
[168].) Thus, while auditing is by no means the only form
of forensic investigation, it is telling that 75% of incident
response specialists consider logs to be the most valuable form
of investigation artifact [28].

We divide the investigation layer into four subtasks per-
formed by the analysts during the investigation process. Given
an alert generated by the detection layer, the analyst first
correlates that alert with all the alerts that happened in the
past. After that, the analyst triages those correlated alerts based
on their severity. Once alerts are triaged, the analyst generates
contextual history to validate given alerts. Finally, the analyst
analyzes the generated contextual information to understand

attack behaviors and initiates appropriate incident response and
IECOVEry process.

1) Alert Correlation: Existing threat detection systems are
prone to high rates of false alarms, leading to issues of
threat alert fatigue [160]. Therefore, a common procedure is
to correlate and cluster alerts to reduce the total number of
incidents that need to be investigated. These techniques can be
divided into similarity-based and causality-based approaches.

Similarity-Based Correlation. In similarity-based tech-
niques, alerts are clustered based on alert attributes’ statistical
and temporal similarity. Pei et al’s HERCULE [44] system
used the Louvain method of community detection to discover
attack communities in heterogeneous audit logs and then lever-
aged these attack communities as a basis to derive correlations
among threat alerts. Valdes and Skinner [45] designed an
alert correlation system that finds similarities among attributes
of different alerts using probabilistic reasoning. Valeur et al.
used a sliding window that stored recently triggered alerts
in a time-ordered queue [46]. This queue allowed authors to
derive correlations among alerts based on the timing similarity
metric. Similarly, Debar and Wespi [47] proposed an alert
correlation methodology that not only correlates alerts based
on time sequence but also finds duplicate alerts (i.e., alerts
that are related to the same attack) using clustering algorithms
and fuse such alerts together. Similarity-based correlation is
widespread in industry, where security information and event
management (SIEM) tools [48-50] employ statistical- and
rule-based similarity metrics to correlate and aggregate alerts.

Causality-Based Correlation. Causality-based alert correla-
tion techniques leverage information flow between different
system entities, such as network sockets and processes, to
derive alert correlation. Zhai et al. [S1] were the first to
use kernel-level audit logs to derive correlation among alerts.
They leverage the Backtracker system [87] to generate depen-
dency graphs from kernel-level audit logs and then use these
graphs to correlate threat alerts. Similarly, HOLMES [31] and
Rapsheet [35] leverage data provenance to derive correlations
among threat alerts. On the other hand, BotHunter [52] lever-
ages network-level communication to identify the stages of
a botnet infection and correlate those stages. What is more,
CLARION [115] and ALASTOR [116] consider constructing
and investigating provenance in the cloud computing context.

2) Alert Triage: To further alleviate threat alert fatigue,
the analysts perform alert triage to investigate high severity
alerts before low severity alerts. DEPIMPACT [61], NoDoze
[34] and Swift [62] prioritize generated alerts based on their
anomalous contextual history. NoDoze and Swift first assign
an anomaly score to each event in the provenance graph based
on the frequency with which related events have happened
before in the enterprise. While DEPIMPACT calculates the
weight scores for edges according to multiple features includ-
ing timing, data flow amount, and node degree. After that, they
aggregate those anomaly scores along the neighboring edges of
the provenance graph and use those aggregated scores to triage
alerts. Unfortunately, NoDoze and Swift are only applicable
if anomalous events exist in the network. Stealthy attacks

often use “living-off-the-land” attack strategies where attackers
abuse benign applications to perform their actions and avoid
anomalous activities. To triage alerts related to such actions,
RapSheet [35] leverages the notion of the tactical provenance
graphs (TPG) that, rather than encoding low-level system event
dependencies, reasoned about causal dependencies between
threat alerts. RapSheet proposed a threat scoring scheme that
assesses each alert’s severity based on its TPG, enabling
effective triage of alerts. Elsewhere in literature, Zhong et
al. [60] mined past analysts’ security operation traces to learn
alert triage rules and then used these rules to automate the
alert triage process.

3) Log Integration: To aid threat alert investigation, it is
important to collect and integrate audit logs from different
vantage points to gain better contextual information. Besides
system logs collected from the kernel layer, the application
layer also provides important contextual information related to
the system execution. Hassan et al.’s Omegal.og [63] merges
application event logs with the system log to generate a univer-
sal provenance graph (UPG). This graph combines the causal
reasoning strengths of whole-system logging with the rich
semantic context of application event logs. HERCULE [44]
correlates entries from dispersed and heterogeneous applica-
tion logs based on common features present in the logs. To
extract such features from the logs, the authors wrote several
correlation rules. In a similar vein of research, ALchemist [64]
applies log normalization techniques and manually-written
Datalog rules to integrate application and system logs without
any program instrumentation. Besides application logs, UIS-
cope [66] claims that the native Ul elements and events of the
GUI applications can be used to offer meaningful contextual
information for causality analysis. It applies these high-level
GUI components to help partition the low-level system logs
generated in the long-running process without instrumentation,
helping to solve the dependency explosion problem. Finally,
ThreatRaptor [65] extracts threat behaviors from open-source
Cyber Threat Intelligence text using NLP techniques and
combines such behaviors with the audit logs. ThreatRaptor
then enables the analyst to hunt these threat behaviors using
a domain-specific query language.

4) Behavior Diagnosis: Several systems have recently been
proposed to help analysts quickly understand the attack behav-
iors from low-level audit events. Zeng et al.’s [53] WATSON
automatically abstracts and clusters high-level system behav-
iors from low-level audit events. WATSON performs Depth-
First Search on each data object to summarize the system be-
havior and then uses the machine learning techniques to infer
each audit event’s semantics based on its contextual usage. The
semantics of each behavior is obtained by aggregating the se-
mantics of each composed event. Finally, behaviors with sim-
ilar semantics are clustered together in the embedding space.
Other learning-based techniques have also been proposed to
facilitate analysts to interpret the provenance graph and help
attack investigation [54-58]. Another work, ProPatrol [59],
also tries to distinguish high-level system behaviors. Unlike
BEEP [98] which needs instrumentation, ProPatrol performs

fine-grained execution partition using derived inference rules
based on the domain knowledge of the Internet-facing appli-
cation. For instance, a tab is an execution unit for browser
applications, and an email is a unit for an email service
application. ProPatrol regards each execution unit as a bin and
classifies the incoming syscall to its corresponding bin. Other
machine learning techniques, specifically natural language
processing, can also be leveraged to achieve efficient attack
scenario construction [54]. HOLMES and RapSheet provide
high-level attack visualizations from low-level audit logs using
MITRE TTPs to accelerate the investigation process.

Challenges at the Investigation Layer

A summary of the investigation layer challenges is given in
Table IV and below we discuss those challenges in detail.

Automation. The goal of the investigation layer is to allow
the analyst to quickly perform forensic analysis. Unfortunately,
several techniques require analyst involvement that can slow
down the whole investigation process. During the alert cor-
relation subtask, statistic- and rule-based techniques require
analysts to manually write parsers and rules to aggregate
threat alerts. In contrast, information flow based techniques
automatically extract causality between threat alerts without
any analyst involvement. To prioritize threat alerts, behavioral-
based techniques, such as [35] and [31], require the analyst
to manually assign scores to each TTP for prioritization.
On the other hand, anomaly- and learning-based techniques
automatically perform alert triage. During the log integration
subtask, methods that employ program analysis and parsing
rules often require the analyst to provide annotations and write
parsers to fuse different log entries, while NLP and temporal
sequencing techniques require no analyst engagement. Finally,
during attack behavior diagnosis, techniques based on learn-
ing and MITRE TTP are fully automated, while rule-based
techniques asks analyst to write inference rules to generate
high-level application tasks.

Accuracy. When considering different investigation tech-
niques, it is essential to consider the accuracy of different
techniques. In the case of alert correlation and log integra-
tion, statistic- and rule-based approaches are less accurate
than information flow-based and program analysis techniques
because such techniques capture true causality, not merely
correlations. Moreover, alert correlation and log integration
techniques that leverage temporal ordering suffer from low
accuracy because several programs generate unordered and
intertwined log entries due to multithreading and asynchronous
programming models. Finally, to bridge the semantic gap
between low-level audit events and high-level attack behaviors,
all the existing techniques provide high accuracy.

IV. EFFICIENCY ANALYSIS OF REDUCTION TECHNIQUES

Audit logs are invaluable to forensic audits, but can quickly
grow to unwieldy sizes [78, 86, 169]. In practice, fine-grained
logs are quickly discarded — if captured at all [129, 130, 170]
— preventing the real-world use of the provenance-based
investigation techniques that have gained popularity in the

ERE 3
£ = 85| =
() Q = 2 -
Z 7 = £%| 8| §
%) & D Fe| gl g
@] < &) | | 2
= <
Technique Systems Logs Used <| <
£ Statistic/Prob. [44, 45] X X 0| ©
E § Temporal Ordering | [46, 47] x x X @O
—
< £ | Statistic/Rule [48-50] 0| o
&)
Information Flow [31, 35, 51, 52, 115, 116] b 4 X | o
_— Anomaly [34, 61, 62] % X X o | -
1
2.8 i _
=E Behavioral [31, 35] X % X | O
Learning [60] - - - - | -
g Program Analysis [63] X X DEN]
e g Rule/Pattern Match | [32, 44, 64] x 0| 0O
= g’ NLP 1651 x | % PRI
= Temporal Ordering | [66] X X ®| O
5 -é Learning [53-58] X | %X | x | | @
>
E Ep Inference/Rule [59] x X O @
Qo
22 | MITRE TTPs [31, 35] x| x| x| e|le®

TABLE 1V: Description of various subtasks performed during the
alert investigation process. The solidness of the marked circle reflects
the automation level and accuracy of technique: High (@), Medium
(0), and Low (O);

literature. Recognizing that the Reduction Layer represents
a bottleneck to the further proliferation of provenance-based
system auditing, we now continue our evaluation of the
reduction layer by conducting the first empirical comparative
analysis of the space efficiency of different audit log reduction
techniques. To do so, we have re-implemented 8 exemplar log
reduction techniques from the literature: LogGC [75], Node-
Merge [76], CPR [79], F-DPR [30], S-DPR [30], PCAR [79],
LogApprox [86], and a graph induction technique based on
Winnower [85] that can be applied to individual processes
instead of Linux containers. To the best of our knowledge,
this is the first systematic comparative study of log reduction
techniques.

A. Dataset

We make use of datasets released by DARPA Transparent
Computing Program, Engagements 3 and 5 [171]. These
engagements were conducted in 2018 and 2019, respectively.
Each engagement contains event streams from multiple hosts
and documented ground truth of the attacks conducted on
the machines. We make use of the Linux-based datasets from
hosts running the Theia and Trace systems. We refer to these
4 datasets as: E3-Theia, E3-Trace, E5-Theia, and E5-Trace,
which respectively comprise 6.9 GB, 10.5 GB, 56 GB, and
252 GB of log data when translated to Linux audit log format.

B. Measurement Setup

We implement the reduction techniques as a filter mecha-
nism that operates over a stream of log events. The mechanism
is implemented in C++ and builds an in-memory graph repre-
sentation of the streaming events using the SNAP graph library
[172]. On an event-by-event basis, we invoke each reduction
technique to determine if the event should be reduced, then

Dataset Application Events Reduced Events of Application
LogGC NodeMerge CPR F-DPR S-DPR PCAR LogApprox Induction
fluxbox 24% 1% <1% 1% 99% 99% 2% 92% 1%
E3-Theia stat 11% 10% 8% 13% 90% 94% 30% 57% 7%
firefox 13% 13% 13% 15% 94% 96% 37% 56% 5%
firefox 76% 2% 4% 10% 19% 21% 12% 12% <1%
E3-Trace /home/admin/du 6% <1% <1% 11% 56% 65% 11% 2% 0
thunderbird 2% 13% 11% 21% 73% 82% 27% 18% 2%
bash 23% <1% 5% 75% 95% 97% 93% 3% 1%
ES-Theia stat 16% <1% 2% 62% 96% 97% 70% 8% 17%
landscape-sysinfo 8% <1% 65% 11% 70% 87% 18% 52% 14%
Xvnc4 53% 0 <1% 72% >99% >99% >99% <1% 0
E5-Trace pulseaudio 9% 17% 33% 19% 85% 92% 35% 28% 2%
mandb 3% 16% 33% 16% 85% 92% 33% 30% 2%

TABLE V: Reduction rates of different techniques for the Top 3 applications of each dataset by number of system calls. For each technique,
the green and red shaded cells denote their best and worst performance across the listed applications.

100
E3-Theia

90 | E3-Trace s
g0 | ES5-Theia memm
E5-Trace
70 | Combined m—

Size Reduction (%)

¢ 77 C
Ogoo Oo'e/%’ &/9
7
(&

N I\ A <, n,
O,Q O/Q 04 004 02/0)
. R R 4 00,0+ %,

Techniques

Fig. 4: Observed reduction percentages for each technique.

tally its decision. While many techniques can be applied to a
local subgraph (e.g., LogGC), other techniques, such as DPR,
perform a global graph operation. We release the implemen-
tation of these techniques to foster future research®. To adapt
these techniques to a streaming setting and reduce memory
consumption, we process log events in batches of 100,000,
then invoke the technique. This approach may underestimate
the space efficiency of the global techniques; that said, we
experimented with larger batch sizes (up to 200,000) and
observed at most a 0.7% change in events reduced across all
techniques combined.

C. Space Efficiency of Individual Techniques

We first report on the space efficiency of individual re-
duction techniques in terms of log size reduction in Figure
4.* Most techniques’ performance was roughly consistent
with the reported performance from their original papers,
with DPR boasting the strongest reduction rates. DPR has
been observed to delete attack-relevant data [86] (a trend we
further validate in IV-G), so we handle it as a separate case
throughout this evaluation. In contrast, a system that appears
to underperform as compared to original reports is LogGC
[75]. The reason for this is that the DARPA TC datasets chose
not to log many of the termination events (e.g., EXIT and

3https://bitbucket.org/sts-lab/faust
4We also analyzed space efficiency in terms of events dropped, but observed
no significant difference in trends as compared to size reduction.

CLOSE), preventing the LogGC algorithm from activating.
When we tested LogGC against in-lab datasets, we found its
performance to be more consistent with its original evaluation,
although it is perhaps telling that the DARPA performers
deemed these events unnecessary. Another underperforming
system is our Winnower-like induction algorithm [85]; this
approach was designed for reducing provenance graphs from
identical containers, and seems to struggle as a general tool.

Surprisingly, we also observe that the performance of
the different log reduction techniques varied significantly by
dataset. In the most extreme case, the DPR techniques achieve
over 90% reduction in E5-Trace but under 60% reduction in
E3-Trace. E3-Trace contains a significantly large proportion of
process events as compared to other datasets. Most reduction
techniques target I/O behavior, which explains the lower
overall reduction rates for E3-Trace. This result is concerning,
as it suggests that log reduction may not be a general solution
but is instead workload-specific.

D. Variance in Space Efficiency By Workload

To gain a better understanding of the observed variances in
reduction between datasets, we mapped each log record in the
datasets back to its issuing process to track the most active
applications. Table V reports on the reduction rates for the
Top 3 applications by the number of system calls. On this
level, significant variance in reduction rates can be observed —
S-DPR ranges from 21% to over 99%, and LogApprox ranges
from under 1% to 92%. The performance also varies by the
behavior of the application, as can be seen by comparing
Firefox in E3-Theia to Firefox in E3-Trace. These results
underscore the difficulty of reporting on the general efficacy
of log reduction techniques; results must be qualified by the
kinds of applications and workloads used in the evaluation.

E. Synergy Between Reduction Techniques

A previously unexplored topic is whether applying multiple
reduction techniques leads to greater space efficiency. Because
our filter mechanism attempts to apply every technique to
every log event, we are able to track the extent to which tech-
niques synergize or are redundant. Consider two techniques
A and B with filtered event counts a and b, respectively. One
option would be to use Jaccard similarity, but this coefficient

https://bitbucket.org/sts-lab/faust

NodeMerge CPR

PCAR LogApprox Induction

LogGC
NodeMerge
CPR

F-DPR
S-DPR
PCAR
LogApprox
Induction

Fig. 5: Percentage unique events filtered by technique A (row), in
comparison to technique B (column) i.e. |a—b|/|a| - Higher value
represents greater uniqueness and vice versa.

Technique 1 | Technique 2 | Technique 3 Size Red.
~ PCAR Induction - 65.77% (2.9X)
g PCAR NodeMerge - 66.94% (3.0X)
5 PCAR LogApprox - 67.96% (3.1X)
S PCAR LogApprox LogGC 71.93% (3.6X)
§ PCAR NodeMerge Induction 72.55% (3.6X)

PCAR LogApprox Induction 73.84% (3.8X)
S-DPR LogApprox - 88.32% (8.6X)
x S-DPR LogGC - 88.53% (8.7X)
g S-DPR NodeMerge - 89.17% (9.2X)
= S-DPR LogGC LogApprox 89.48% (9.5X)
'§ S-DPR NodeMerge Induction 89.63% (9.6X)
S-DPR NodeMerge LogGC 90.24% (10.3X)

[All Techniques Combined 90.70% (10.8X)]

TABLE VI: Top 3 2-sized and 3-sized subsets of techniques (with
and without DPR) for all 4 datasets combined and their corresponding
reduction rates i.e both log reduction percentage (1 - Reduced Log
/ Raw Log) and in parenthesis the log reduction factor (Raw Log /
Reduced Log).

would be misleading when a and b differ significantly in size.
We instead calculate the percentage of unique events filtered
by A as compared to B as |a — b|/|al.

The results across all datasets are visualized in Figure 5. In
the figure, each matrix row visualizes the percentage unique
reduction by the given technique compared to the technique in
the column. Intuitively, techniques that are the basis of other
techniques do not filter any unique events in comparison, such
as CPR for F-DPR, S-DPR, and PCAR. Reading down the
column for S-DPR, the most aggressive filter, indicates which
filters can provide any supplementary benefit — LogGC and
NodeMerge, two of the worst performers in isolation, are most
effective at filtering events that S-DPR does not. In fact, read-
ing across the LogGC and NodeMerge rows, it appears that
semantic pruning techniques consistently filter a unique subset
of events in comparison to other techniques. Unfortunately,

Technique % Reduction | Reduction Factor
Reduce Only 90.70 10.8X
Hybrid Only 64.13 2.8X

Gzip Only 95.61 22.8X

Reduce & Hybrid 95.47 22.1X
Reduce & Gzip 99.46 185.4X

TABLE VII: Comparison of log reduction rates between different
filtering techniques and 2 compression schemes for all 4 datasets
combined. For ease of reference, we report both of the 2 different
statistics used in prior work; log reduction percentage (1 - Reduced
Log / Raw Log) and the log reduction factor (Raw Log / Reduced
Log).

Data Format | Mean (s) Min (s) Max (s) Std (s)

Uncompressed | 0.000416 | 0.000035 | 0.016698 | 0.001193

Hybrid comp. 0.005701 | 0.000342 | 0.51132 0.026425
Gzip comp. 0.581273 | 0.580776 | 0.59905 0.001321

TABLE VIII: Query times for 500 random backtrace queries on the
provenance graph associated with E3-Theia.

most other approaches offer only limited synergy with DPR.
To confirm this, we calculate the total log reduction when
multiple techniques are applied. Table VI reports on the size
reduction when two, three, or all techniques are applied for
all 4 datasets combined. We report size reduction in terms
of both percentage of original log size as well as the “log
reduction factor,” which can be interpreted as the number of
times the reduced log can be fit into the storage footprint of
the original log. Withour DPR in consideration, total reduction
increases from 66-68% with two techniques to 72-74% with
three techniques. With DPR, total reduction increases from 88-
89% with two and to 89-90% with three. Unfortunately, there
are diminishing returns as more techniques are applied — with
all techniques combined, we achieve just 90.7% reduction,
just a single order of magnitude. We conclude that current
reduction techniques are highly redundant, filtering nearly the
same amount combined as the top individual performers.

F. Synergy with Compression

Although we observed diminishing returns when applying
multiple reduction techniques, there may exist synergy be-
tween log reduction and data compression. However, because
data compression agressively deduplicate sources of redun-
dancy in the log without regard to its structure or semantics,
it is not a foregone conclusion that reduction techniques can
provide any added value. To investigate, we make use of
two data compression techniques — simple gzip compression,
and a hybrid graph compression scheme based on Xie et
al’s [81, 82]. The hybrid scheme performs web compression
on the graph structure as well as dictionary encoding on
edge and vertex labels, to deduplicate data. Notably, while
querying a gzip-compressed log requires the entire file to be
decompressed, the hybrid scheme supports decompression of
individual paths in the graph.

Storage Overhead. — We report on the total storage over-
head across the four datasets combined in Table VII. The
first three rows report individual reduction results for the
combined reduction techniques, hybrid compression, and gzip
compression, while the last two rows report on reduced-

Data % Reduction DeepLog StreamSpot ProvDetector

TP | FP TN FN | Precision (%) | Recall (%) | AS Attack | AS Benign | % top-k AP retained
Unfiltered 0 27 24 | 48253 4 52.94 87.10 0.52 0.08 100
Induction 6.18 27 24 | 48253 4 52.94 87.10 0.52 0.08 100
LogGC 9.35 27 24 | 48253 4 52.94 87.10 0.52 0.08 100
NodeMerge 104 27 24 | 48253 4 52.94 87.10 0.52 0.08 100
CPR 22.04 25 29 | 48248 6 46.30 80.65 0.49 0.08 95
PCAR 37.13 25 29 | 48248 6 46.30 80.65 0.49 0.08 95
LogApprox 60.77 23 47 11415 7 32.86 76.67 0.56 0.15 85
F-DPR 89.52 4 63 5226 24 5.97 14.29 0.44 0.27 55
S-DPR 92.45 4 78 5104 24 4.88 14.29 0.44 0.25 55

TABLE IX: Detection results of 3 representative anomaly detection systems for all 8 reduced datasets. The first row represents the baseline
numbers for the unfiltered dataset. Accuracy numbers are omitted as they are not representative of forensic utility due to large number of

TNs (AS = anomaly score, AP = anomalous paths).

then-compressed logs.> To our surprise, however, pre-filtering
the log using reduction techniques results in a significantly
smaller storage footpring than pure compression - a company
that previously could only store 3 days worth of logs [129]
before purging them would be able to store 32 days with log
filtering only, 68 days with gzip compression only, and 1.5
years when applying both filtering and gzip compression! This
suggests that reduced logs can be very efficiently retained in
cold storage. We also observe encouraging synergy for the
more query-friendly hybrid compression, enabling 67 days of
retained data given an original budget of 3 days.

Query Overhead. To compare query overhead, we randomly
select 500 nodes from the E3-Theia dataset and measure
the time taken to complete a backtrace query using each
compressed representation. The baseline query runs on un-
compressed logs, while in the gzip test the log must first
be fully decompressed, whereas in the hybrid test we are
able to lazily decompress the graph based on the paths of
the backtrace traversal. The query times for all 3 cases are
reported in Table VIII. In this experiment, we use only a
subset (15%) of the E3-Theia dataset, which is why even
the slowest compression system (GZip) enjoyed sub-second
response times. This performance would degrade on larger
graphs; the real takeaway is Gzip compression on average
incurs 1450X more query overhead compared to the baseline,
while the hybrid scheme provides middle ground by only
increasing the query overhead by 13X.°

G. Forensic Utility of Reduced Logs

We next set out to determine if reduction techniques impact
the forensic utility of the audit log. To do so, we analyzed
the reduced logs using three exemplar anomaly detection
systems: DeepLog’ [42], StreamSpot [39], and ProvDetector
[37]. Due to the high costs of model training over large

SWe note that the “Hybrid Only” and “Reduce & Hybrid” results are actu-
ally not for a log representation of the data, but for the size of two serialized
data objects describing the log. This representation without compression is
nearly identifcal in size to the raw log file.

SUnfortunately, we are unable to provide a comparison with SEAL [84],
concurrent work that uses a hybrid compression scheme but is unreleased and
was not evaluated on public datasets.

7We utilized a 3rd party implementation of DeepLog for our experiments:
https://github.com/nailo2c/deeplog

datasets, we performed this experiment only on E3-Theia. To
create comprehensive ground truth labels for the attack events
in the dataset, we performed back traces on each of the attack
steps described in the E3 documentation, then manually pruned
the results to remove false dependencies. We then applied each
reduction technique on the labeled dataset.

Using the optimal configurations reported in the original
papers, we then trained each anomaly detection system using
a 70/30 train/test split. DeepLog performed classification at
the granularity of individual log sequence windows of 1000
ms of log data, of which there were almost 50 thousand.
We report TP, FP, TN, FN, recall and precision for this
model.® Streamspot and ProvDetector perform whole-graph
classification, but the test dataset is arguably just one graph.
To circumvent this obstacle, we constructed two synthetic
test samples, one fully-benign graph and one fully-malicious
graph. While not realistic, these can be thought of as an upper
bound for the performance of the classifier because there is
no “noise” in the attack graph. For Streamspot, we report the
mean anomaly score for the attack and benign samples. For
ProvDetector, which downsamples the graph to k paths before
classification (k = 20), we report the proportion of paths from
the unfiltered attack log that were still selected for embedding
in the reduced version of the log.

The results are shown in Table IX. Across all systems,
we observe an inverse relation between storage efficiency and
anomaly detection performance. For DeepLog, low-reduction
techniques are not associated with any change in detection
performance, while the most aggressive techniques see a
dramatic drop in the model’s ability to detect attack se-
quences and avoid false positives. Results are less extreme for
Streamspot and ProvDetector, both of which correctly detected
an anomaly in the synthetic attack graph. However, it is clear
for both systems that the distinction between attack and benign
activity is beginning to blur. For Streamspot, the difference in
attack/benign anomaly scores closes as reduction techniques
grow more aggressive, while in ProvDetector up to 45% of
the paths identified as suspicious have changed when DPR is
active. PCAR and CPR, moderately space efficient reduction

8 Accuracy can be calculated from the provided data, but is highly mislead-
ing due to the large number of true negatives.

https://github.com/nailo2c/deeplog

techniques, appear to offer the best tradeoff between reduction
performance and forensic utility.

V. FUTURE DIRECTIONS

In this work, we have conducted a thorough analysis of

the provenance-based system auditing literature using both
qualitative and empirical methods. Throughout Section III,
we identify a number of open challenges in isolated layers
of log capture and analysis pipeline — the need for verified
implementations at the capture layer, efficient query capabil-
ities at the infrastructure layer, assessment of alert fatigue
issues at the detection layer, etc. We have also developed a
unified framework for the evaluation of future log reduction
techniques, which will be open sourced upon publication.
We conclude by considering cross-cutting challenges that
implicate multiple layers of our taxonomy, discussing possible
directions of future research for each.
Cross-Cutting Challenge #1: Reducing Time-to-Insight.
The need to extract actionable insight from massively dense
provenance graphs has been a driving force for research in
provenance-based system auditing. Combatting dependency
explosion (e.g., [98]), removing forensically-irrelevant events
(e.g., [75]), and unifying multiple event streams (e.g., [63])
all provide partial solutions, but there is still more work to be
done. In particular, we anticipate that the community will soon
reach the limits of what can be achieved through technical
solutions alone — time-to-insight is fundamentally a socio-
technical problem.

Future research should engage expert analysts and industry
stakeholders to better understand today’s challenges and the
potential implications of novel causal analysis techniques.
We are already seeing commercial products that incorporate
provenance-like graph visualizations to explain alerts (e.g.,
Crowdstrike [173], Sophos [174], and Comodo [175]) — does
this information improve threat investigation efficiency, and
if so how? Can it be made more effective through incor-
porating techniques from the academic literature? While we
are encouraged by academic-industry partnerships that have
anecdotally shed light on real-world issues (e.g., NEC Lab-
oratories [68], Symantec [35]), what is most sorely needed
is principled measurement and intervention through human
subjects research. We envision recruiting analysts for surveys,
laboratory experiments that track their threat hunting practices
in a controlled environment, experimental manipulations that
test the efficacy of causal analysis techniques, and new soft-
ware systems that are co-designed and evaluated against such
experiments. Through such study, the academic community
will gain deeper insights into the challenges of adapting and
using provenance-based system in practice, and even gain a
sense of the efficacy of these systems against attacks in-the-
wild, spurring further exploration in the technical space.
Cross-Cutting Challenge #2: End-to-End Audit Security.
The literature has largely waived away the threat of active
attacks against auditing systems. Due to the real-world threat
of anti-forensic attacks (e.g., [176, 177]), this position is unten-
able. The limited work on audit security that has appeared has

focused on the capture layer, e.g., kernel hardening [97] and
tamper-evident auditing [74, 124-126, 178, 179], but threats
to the integrity of the audit pipeline are pervasive at all layers.
For example, recent work by Carter et al. [180] demonstrates
control flow manipulation of compromised applications at
the capture layer, which affects the integrity of investigation
layer routines such as behavior diagnosis and log unification.
This example underscores the importance of broadening our
understanding of audit security beyond simply assuring the
integrity of at-rest log data. For example, we envision further
research into the forensic validity of log reduction techniques,
the security implications of intelligent causal graph query
algorithms, and the feasibility of evasion attacks against causal
graph detection systems. The correctness of our response to
system intrusions depends on assuring the end-to-end custody
of audit streams.
Cross-Cutting Challenge #3: Scaling Up Holistic Auditing.
To date, the infrastructure layer has received less attention than
its peers; in fact, many of the key papers we discussed in this
layer were the result of a concerted effort by a single company,
NEC Laboratories [62, 65, 68, 70, 71]. While understanding
challenges at the infrastructure layer are difficult without
industry insight, it is clear that innovative solutions to the
distributed management of audit logs are required for causal
analysis to become widely deployed. We are encouraged by
existing work that has attempted to solve log management
through cross-layer solutions, such as the KCAL [78] and
CamQuery [69] systems that respectively embed reduction
and query solutions into endpoint capture mechanisms. We
envision future research that designs systems in anticipation
of massive deployments of tens of thousands of machines.
Audit logs can quickly grow to unwieldy sizes with logs
generation rates reported to be anywhere between 1 GB [169]
to 33 GB [78] per day per machine. While most commercial
systems utilize commodity auditing frameworks to collect
audit logs for EDR systems, many large organizations are
simply unwilling to pay for long-term retention of audit logs.
Commercial products often store the logs in a ring buffer
that is typically allocated to provide just a few months [130],
or in some cases only days [129, 170], of storage. These
retention periods are simply insufficient when considering the
duration of APTs in high-profile data breaches (e.g., [17-
23]). As a result, log storage and retention costs contribute
to the difficulty of effectively detecting and responding to
threats. Therefore, the reduction layer is essential to the
proliferation of the various provenance techniques explored
in our survey. However, our efficiency analysis paints a
mixed picture of the current state-of-the art. We found that
reduction techniques were not synergistic with one another,
but enjoyed multiplicative improvements in log size reduction
when deployed alongside traditional data compression. Most
excitingly, the log reduction factor achieved with gzip provides
an extraordinarily efficient means of audit log cold storage,
enabling organizations to retain orders of magnitude more log
data when it is not in active use. An important caveat to
this result is that the resulting log will experience impaired

forensic utility — our anomaly detection experiments uncover
a disturbing trend in which aggressive log reduction led to
reduced intrusion detection performance. To further explore
this issue, we recommend that future research on audit log
reduction conduct security analyses not just through demon-
strative anecdotal examples, but also through data-driven anal-
ysis of the impacts on security monitoring software. Further,
we envision future research on forensically-optimized hybrid
compression techniques, distributed and lossless deduplication
of log data, anomaly-detection-friendly log reduction and
compression approaches, and novel metrics for evaluating the
security of log reduction techniques.

VI. CONCLUSION

Auditing is an indispensable element of the “Gold Standard”
of operating system security [3], a fact that has only recently
been reflected in the security literature. It is our hope that this
work serves as a summary of the communities efforts to date
and a launching point for further inquiry.

ACKNOWLEDGMENT

We thank our shepherd, Grant Ho, and the anonymous
reviewers for their comments and suggestions. We also thank
the members of the research community, in particular Shiqing
Ma, Kangkook Jee, and Thomas Moyer for their feedback
on the preprint version of our paper. Muhammad Adil Inam
was partially supported by the Sohaib and Sara Abbasi Com-
puter Science Fellowship. This work was supported in part
by the NSF under contracts CNS-16-57534, CNS-17-50024
and CNS-20-55127. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of their
employers or the sponsors.

REFERENCES

[1] T. Jaeger, “Operating system security,” Synthesis Lectures on Informa-
tion Security, Privacy, and Trust, vol. 1, no. 1, 2008.

[2] J. P. Anderson, “Computer Security Technology Planning Study,” Air
Force Electronic Systems Division, Tech. Rep. ESD-TR-73-51, 1972.

[3] B.Lampson, “Perspectives on protection and security,” in SOSP History
Day 2015, ser. SOSP ’15. Association for Computing Machinery,
2015.

[4] P. Loscocco and S. Smalley, “Integrating Flexible Support for Security
Policies into the Linux Operating System,” in Proceedings of the 2001
USENIX Annual Technical Conference. USENIX Association, 2001.

[5] S. Smalley, C. Vance, and W. Salamon, “Implementing SELinux as a
Linux security module,” NAI Labs Report, vol. 1, 2001.

[6] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman,
“Linux security modules: General security support for the linux kernel,”
in USENIX Security Symposium, 2002.

[7]1 B. Hicks, S. Rueda, L. St.Clair, T. Jaeger, and P. McDaniel, “A Logical
Specification and Analysis for SELinux MLS Policy,” ACM Trans. Inf.
Syst. Secur., vol. 13, no. 3, 2010.

[8] T. Jaeger, R. Sailer, and X. Zhang, “Analyzing integrity protection in
the selinux example policy,” in USENIX Security Symposium, 2003.

[9] K. Sueyasu, T. Tabata, and K. Sakurai, “On the security of selinux

with a simplified policy,” in Proceedings of the IASTED International

Conference on Communication, Network, and Information Security,

M. Hamza, Ed., 2003.

A. Edwards, T. Jaeger, and X. Zhang, “Runtime verification of autho-

rization hook placement for the linux security modules framework,” in

ACM CCS, 2002.

V. Ganapathy, T. Jaeger, and S. Jha, “Automatic placement of autho-

rization hooks in the linux security modules framework,” in ACM CCS,

2005.

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

T. Jaeger, A. Edwards, and X. Zhang, “Consistency Analysis of Autho-
rization Hook Placement in the Linux Security Modules Framework,”
ACM Trans. Inf. Syst. Secur., vol. 7, no. 2, 2004.

X. Zhang, A. Edwards, and T. Jaeger, “Using CQUAL for Static
Analysis of Authorization Hook Placement,” in USENIX Security
Symposium, 2002.

SUSE LINUXAG, “Linux Audit-Subsystem Design Documentation for
Linux Kernel 2.6, v0.1,” Available at http://uniforum.chi.il.us/slides/
HardeningLinux/LAuS-Design.pdf, 2004.

N. S. Agency, “Controlled Access Protection Profile, Version 1.d,”
https://www.niap-ccevs.org/Profile/Info.cfm?PPID=14&id=14, 1999.
——, “Labeled Security Protection Profile, Version 1.b,” https://www.
niap-ccevs.org/Profile/Info.cfm?PPID=17&id=17, 1999.

“Equifax Says Cyberattack May Have Affected 143 Million
in the U.S.” https://www.nytimes.com/2017/09/07/business/equifax-
cyberattack.html.

G. Kurtz, “Operation Aurora Hit Google, Others,” 2010, available at
http://securityinnovator.com/index.php?articlelD=42948 §ion]D=
25.

“Inside the Cyberattack That Shocked the US Government,” https://
www.wired.com/2016/10/inside-cyberattack-shocked-us-government/.
N. Perlroth and D. E. Sanger, “Cyberattacks Put Russian Fingers on the
Switch at Power Plants, U.S. Says,” https://www.nytimes.com/2018/03/
15/us/politics/russia-cyberattacks.html, 2018.

“APT3,” https://attack.mitre.org/groups/G0022/, 2019.

“APT29,” https://attack.mitre.org/groups/G0016/, 2019.

“Target Missed Warnings in Epic Hack of Credit Card Data,” https:
//bloom.bg/2KjEIxM.

Crowdstrike, “Why Dwell Time Continues to Plague Organiza-
tions,” https://www.crowdstrike.com/blog/why-dwell-time-continues-
to-plague-organizations/, 2019.

S. Morgan, “Global Cybersecurity Spending Predicted To Ex-
ceed $1 Trillion From 2017-2021,” https://cybersecurityventures.com/
cybersecurity-market-report/, 2019.

“Endpoint Detection and Response Solutions Market,”
https://www.gartner.com/reviews/market/endpoint-detection-and-
response-solutions, 2019.

J. Goepfert, K. Massey, and M. Shirer, “Worldwide Spending on
Security Solutions Forecast to Reach $103.1 Billion in 2019, According
to a New IDC Spending Guide,” https://www.businesswire.com/news/
home/20190320005114/en/, 2019.

Carbon Black, “Global incident response threat
https://www.carbonblack.com/global-incident-response-threat-
report/november-2018/, 2018, last accessed 04-20-2019.

L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth,
N. Kwasnikowska, S. Miles, P. Missier, J. Myers et al., “The Open
Provenance Model Core Specification (v1. 1),” Future Generation
Computer Systems, vol. 27, no. 6, 2011.

M. N. Hossain, J. Wang, O. Weisse, R. Sekar, D. Genkin, B. He,
S. D. Stoller, G. Fang, F. Piessens, E. Downing et al., “Dependence-
preserving data compaction for scalable forensic analysis,” in USENIX
Security Symposium, 2018.

S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrish-
nan, “Holmes: real-time apt detection through correlation of suspicious
information flows,” in IEEE Symposium on Security and Privacy (SP),
2019.

S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. Venkatakrishnan,
“Poirot: Aligning attack behavior with kernel audit records for cyber
threat hunting,” in CCS, 2019.

M. N. Hossain, S. Sheikhi, and R. Sekar, “Combating dependence
explosion in forensic analysis using alternative tag propagation seman-
tics,” in IEEE Symposium on Security and Privacy (SP), 2020.

W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“Nodoze: Combatting threat alert fatigue with automated provenance
triage,” in NDSS, 2019.

W. U. Hassan, A. Bates, and D. Marino, “Tactical provenance analysis
for endpoint detection and response systems,” in IEEE Symposium on
Security and Privacy (SP), 2020.

M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo,
R. Sekar, S. Stoller, and V. Venkatakrishnan, “Sleuth: Real-time attack
scenario reconstruction from cots audit data,” in USENIX Security
Symposium, 2017.

report,”

http://uniforum.chi.il.us/slides/HardeningLinux/LAuS-Design.pdf
http://uniforum.chi.il.us/slides/HardeningLinux/LAuS-Design.pdf
https://www.niap-ccevs.org/Profile/Info.cfm?PPID=14&id=14
https://www.niap-ccevs.org/Profile/Info.cfm?PPID=17&id=17
https://www.niap-ccevs.org/Profile/Info.cfm?PPID=17&id=17
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
http://securityinnovator.com/index.php?articleID=42948§ionID=25
http://securityinnovator.com/index.php?articleID=42948§ionID=25
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
https://www.nytimes.com/2018/03/15/us/politics/russia-cyberattacks.html
https://www.nytimes.com/2018/03/15/us/politics/russia-cyberattacks.html
https://attack.mitre.org/groups/G0022/
https://attack.mitre.org/groups/G0016/
https://bloom.bg/2KjElxM
https://bloom.bg/2KjElxM
https://www.crowdstrike.com/blog/why-dwell-time-continues-to-plague-organizations/
https://www.crowdstrike.com/blog/why-dwell-time-continues-to-plague-organizations/
https://cybersecurityventures.com/cybersecurity-market-report/
https://cybersecurityventures.com/cybersecurity-market-report/
https://www.gartner.com/reviews/market/endpoint-detection-and-response-solutions
https://www.gartner.com/reviews/market/endpoint-detection-and-response-solutions
https://www.businesswire.com/news/home/20190320005114/en/
https://www.businesswire.com/news/home/20190320005114/en/
https://www.carbonblack.com/global-incident-response-threat-report/november-2018/
https://www.carbonblack.com/global-incident-response-threat-report/november-2018/

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee, Z. Chen,
W. Cheng, C. Gunter et al., “You are what you do: Hunting stealthy
malware via data provenance analysis,” in NDSS, 2020.

X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “Unicorn:
Runtime provenance-based detector for advanced persistent threats,” in
NDSS, 2020.

E. Manzoor, S. M. Milajerdi, and L. Akoglu, “Fast memory-efficient
anomaly detection in streaming heterogeneous graphs,” in ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2016.

X. Han, T. Pasquier, T. Ranjan, M. Goldstein, and M. Seltzer, “Frap-
puccino: Fault-detection through runtime analysis of provenance,” in
HotCloud, 2017.

X. Han, X. Yu, T. Pasquier, D. Li, J. Rhee, J. Mickens, M. Seltzer, and
H. Chen, “Sigl: Securing software installations through deep graph
learning,” in USENIX Security Symposium, 2021.

M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in CCS, 2017.
T. van Ede, H. Aghakhani, N. Spahn, R. Bortolameotti, M. Cova,
A. Continella, M. van Steen, A. Peter, C. Kruegel, and G. Vigna,
“Deepcase: Semi-supervised contextual analysis of security events,” in
IEEE Symposium on Security and Privacy (SP), 2022.

K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang, Z. Zhang, L. Si,
X. Zhang, and D. Xu, “Hercule: Attack story reconstruction via
community discovery on correlated log graph,” in ACSAC, 2016.

A. Valdes and K. Skinner, “Probabilistic alert correlation,” in Interna-
tional Workshop on Recent Advances in Intrusion Detection, 2001.

F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer, “Comprehensive
approach to intrusion detection alert correlation,” IEEE Transactions on
Dependable and Secure Computing, vol. 1, no. 3, 2004.

H. Debar and A. Wespi, “Aggregation and correlation of intrusion-
detection alerts,” in International Workshop on Recent Advances in
Intrusion Detection. Springer, 2001.

“Endpoint Monitoring & Security,” https://logrhythm.com/solutions/
security/endpoint-threat-detection/, 2019.

“Logz.io,” https://logz.io/.

Splunk Inc., “splunk,” https://www.splunk.com, Last accessed August
2018.

Y. Zhai, P. Ning, and J. Xu, “Integrating ids alert correlation and os-
level dependency tracking,” in International Conference on Intelligence
and Security Informatics. Springer, 2006.

G. Gu, P. Porras, V. Yegneswaran, and M. Fong, “BotHunter: Detecting
malware infection through ids-driven dialog correlation,” in USENIX
Security Symposium, 2007.

J. Zeng, Z. L. Chua, Y. Chen, K. Ji, Z. Liang, and J. Mao, “Watson:
Abstracting behaviors from audit logs via aggregation of contextual
semantics,” in NDSS, 2021.

A. Alsaheel, Y. Nan, S. Ma, L. Yu, G. Walkup, Z. B. Celik, X. Zhang,
and D. Xu, “Atlas: A sequence-based learning approach for attack
investigation,” in USENIX Security Symposium, 2021.

G. D. L. T. Parra, L. Selvera, J. Khoury, H. Irizarry, E. Bou-Harb,
and P. Rad, “Interpretable federated transformer log learning for cloud
threat forensics,” in NDSS, 2022.

A. Tabiban, H. Zhao, Y. Jarraya, M. Pourzandi, M. Zhang, and L. Wang,
“Provtalk: Towards interpretable multi-level provenance analysis in
networking functions virtualization (nfv),” in NDSS, 2022.

Z. Xu, P. Fang, C. Liu, X. Xiao, Y. Wen, and D. Meng, “Depcomm:
Graph summarization on system audit logs for attack investigation,” in
IEEE Symposium on Security and Privacy (SP), 2022.

J. Zeng, X. Wang, J. Liu, Y. Chen, Z. Liang, T.-S. Chua, and Z. L. Chua,
“Shadewatcher: Recommendation-guided cyber threat analysis using
system audit records,” in IEEE Symposium on Security and Privacy
(SP), 2022.

S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. N. Venkatakrishnan,
“Propatrol: Attack investigation via extracted high-level tasks,” in
International Conference on Information Systems Security. Springer,
2018.

C. Zhong, J. Yen, P. Liu, and R. F. Erbacher, “Automate cybersecurity
data triage by leveraging human analysts’ cognitive process,” in IEEE
BigDataSecurity, 2016.

P. Fang, P. Gao, C. Liu, E. Ayday, K. Jee, T. Wang, Y. F. Ye, Z. Liu,
and X. Xiao, “Back-propagating system dependency impact for attack
investigation,” in USENIX Security Symposium, 2022.

W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, D. Wang, Z. Chen,
Z. Li, J. Rhee, J. Gui et al., “This is why we can’t cache nice

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

things: Lightning-fast threat hunting using suspicion-based hierarchical
storage,” in ACSAC, 2020.

W. U. Hassan, M. A. Noureddine, P. Datta, and A. Bates, “Omega-
log: High-fidelity attack investigation via transparent multi-layer log
analysis,” in NDSS, 2020.

L. Yu, S. Ma, Z. Zhang, G. Tao, X. Zhang, D. Xu, V. E. Urias, H. W.
Lin, G. Ciocarlie, V. Yegneswaran et al., “Alchemist: Fusing application
and audit logs for precise attack provenance without instrumentation,”
in NDSS, 2021.

P. Gao, F. Shao, X. Liu, X. Xiao, Z. Qin, E. Xu, P. Mittal, S. R.
Kulkarni, and D. Song, “Enabling efficient cyber threat hunting with
cyber threat intelligence,” in 2021 IEEE 37th International Conference
on Data Engineering (ICDE), 2021.

R. Yang, S. Ma, H. Xu, X. Zhang, and Y. Chen, “Uiscope: Accurate,
instrumentation-free, and visible attack investigation for gui applica-
tions,” in NDSS, 2020.

T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and
J. Bacon, “Practical whole-system provenance capture,” in Symposium
on Cloud Computing, 2017.

Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a timely causality analysis for enterprise security.” in NDSS,
2018.

T. Pasquier, X. Han, T. Moyer, A. Bates, O. Hermant, D. Eyers, J. Ba-
con, and M. Seltzer, “Runtime analysis of whole-system provenance,”
in CCS, 2018.

P. Gao, X. Xiao, Z. Li, F. Xu, S. R. Kulkarni, and P. Mittal, “Aiql:
Enabling efficient attack investigation from system monitoring data,”
in USENIX ATC, 2018.

P. Gao, X. Xiao, D. Li, Z. Li, K. Jee, Z. Wu, C. H. Kim, S. R.
Kulkarni, and P. Mittal, “SAQL: A stream-based query system for
real-time abnormal system behavior detection,” in USENIX Security
Symposium, 2018.

A. Gehani and D. Tariq, “Spade: Support for provenance audit-
ing in distributed environments,” in ACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and Open Distributed
Processing. Springer, 2012.

A. Gehani and M. Kim, “Mendel: Efficiently Verifying the Lineage of
Data Modified in Multiple Trust Domains,” in hpdc10, ser. HPDC’ 10,
2010.

R. Paccagnella, P. Datta, W. U. Hassan, A. Bates, C. W. Fletcher,
A. Miller, and D. Tian, “Custos: Practical Tamper-Evident Auditing
of Operating Systems Using Trusted Execution,” in NDSS, 2020.

K. H. Lee, X. Zhang, and D. Xu, “Loggc: garbage collecting audit
log,” in CCS, 2013.

Y. Tang, D. Li, Z. Li, M. Zhang, K. Jee, X. Xiao, Z. Wu, J. Rhee,
F. Xu, and Q. Li, “Nodemerge: template based efficient data reduction
for big-data causality analysis,” in CCS, 2018.

A. Bates, D. Tian, G. Hernandez, T. Moyer, K. R. Butler, and
T. Jaeger, “Taming the Costs of Trustworthy Provenance through Policy
Reduction,” ACM Trans. on Internet Technology, vol. 17, no. 4, 2017.
S. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Zhang, G. Ciocarlie, A. Gehani,
V. Yegneswaran, D. Xu, and S. Jha, “Kernel-supported cost-effective
audit logging for causality tracking,” in USENIX ATC, 2018.

Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, and
G. Jiang, “High fidelity data reduction for big data security dependency
analyses,” in CCS, 2016.

R. Ahmad, M. Bru, and A. Gehani, “Streaming provenance com-
pression,” in Provenance and Annotation of Data and Processes,
K. Belhajjame, A. Gehani, and P. Alper, Eds. Springer International
Publishing, 2018.

Y. Xie, D. Feng, Z. Tan, L. Chen, K.-K. Muniswamy-Reddy, Y. Li, and
D. D. Long, “A Hybrid Approach for Efficient Provenance Storage,” in
Proceedings of the 21st ACM International Conference on Information
and Knowledge Management, ser. CIKM ’12, 2012.

Y. Xie, K.-K. Muniswamy-Reddy, D. Feng, Y. Li, and D. D. E. Long,
“Evaluation of a Hybrid Approach for Efficient Provenance Storage,”
Trans. Storage, vol. 9, no. 4, 2013.

Y. Xie, K.-K. Muniswamy-Reddy, D. D. E. Long, A. Amer, D. Feng,
and Z. Tan, “Compressing Provenance Graphs,” in fappll, ser.
TAPP’11, 2011.

P. Fei, Z. Li, Z. Wang, X. Yu, D. Li, and K. Jee, “Seal: Storage-efficient
causality analysis on enterprise logs with query-friendly compression,”
in USENIX Security Symposium, 2021.

W. U. Hassan, L. Aguse, N. Aguse, A. Bates, and T. Moyer, “Towards

https://logrhythm.com/solutions/security/endpoint-threat-detection/
https://logrhythm.com/solutions/security/endpoint-threat-detection/
https://logz.io/
https://www.splunk.com

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]
[109]

[110]
[111]

scalable cluster auditing through grammatical inference over prove-
nance graphs,” in NDSS, 2018.

N. Michael, J. Mink, J. Liu, S. Gaur, W. U. Hassan, and A. Bates, “On
the forensic validity of approximated audit logs,” in ACSAC, 2020.

S. T. King and P. M. Chen, “Backtracking intrusions,” in Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles,
ser. SOSP "03. ACM, 2003.

Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso, and
W. Lee, “Rain: Refinable attack investigation with on-demand inter-
process information flow tracking,” in CCS, 2017.

Y. Ji, S. Lee, and W. Lee, “Recprov: Towards provenance-aware user
space record and replay,” in Provenance and Annotation of Data and
Processes, M. Mattoso and B. Glavic, Eds. Springer International
Publishing, 2016.

M. Stamatogiannakis, P. Groth, and H. Bos, “Decoupling provenance
capture and analysis from execution,” in USENIX TaPP, 2015.
“System administration utilities,” man7.org/linux/man-pages/man8/
auditd.8.html/.

K. Bridge, K. Sharkey, D. Coulter, M. Jacobs, and M. Satran, “About
Event Tracing,” https://docs.microsoft.com/en-us/windows/win32/etw/
about-event-tracing, 2018.

K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer,
“Provenance-aware Storage Systems,” in Proceedings of the Annual
Conference on USENIX '06 Annual Technical Conference, ser. atc06,
2006.

K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko,
D. Maclean, D. Margo, M. Seltzer, and R. Smogor, “Layering in
Provenance Systems,” in atc09, ser. ATC’09, 2009.

P. McDaniel, K. Butler, S. McLaughlin, R. Sion, E. Zadok, and
M. Winslett, “Towards a Secure and Efficient System for End-to-End
Provenance,” in USENIX TaPP, 2010.

D. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-Fi: Collect-
ing High-Fidelity Whole-System Provenance,” in Proceedings of the
2012 Annual Computer Security Applications Conference, ser. ACSAC
’12, 2012.

A. Bates, D. Tian, K. R. Butler, and T. Moyer, “Trustworthy Whole-
System Provenance for the Linux Kernel,” in USENIX Security Sym-
posium, 2015.

K. H. Lee, X. Zhang, and D. Xu, “High accuracy attack provenance
via binary-based execution partition.” in NDSS, 2013.

S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “Mpi:
Multiple perspective attack investigation with semantic aware execution
partitioning,” in USENIX Security Symposium, 2017.

Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma, X. Zhang,
D. Xu, S. Jha, G. F. Ciocarlie et al., “Mci: Modeling-based causality
inference in audit logging for attack investigation.” in NDSS, 2018.
B. Li, P. Vadrevu, K. H. Lee, and R. Perdisci, “JSgraph: Enabling
Reconstruction of Web Attacks via Efficient Tracking of Live In-
Browser JavaScript Executions,” in NDSS, 2018.

S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu, “Accurate,
low cost and instrumentation-free security audit logging for windows,”
in Proceedings of the 31st Annual Computer Security Applications
Conference, ser. ACSAC 2015. ACM, 2015.

M. A. Inam, W. U. Hassan, A. Ahad, A. Bates, R. Tahir, T. Xu, and
F. Zaftar, “Forensic analysis of configuration-based attacks,” in NDSS,
2022.

M. Backes, S. Bugiel, and S. Gerling, “Scippa: System-centric ipc
provenance on android,” in Proceedings of the 30th Annual Computer
Security Applications Conference, ser. ACSAC "14. ACM, 2014.

M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach,
“Quire: Lightweight provenance for smart phone operating systems,”
in Proceedings of USENIX Security 11. USENIX Association, 2011.
C. Yang, G. Yang, A. Gehani, V. Yegneswaran, D. Tariq, and G. Gu,
Using Provenance Patterns to Vet Sensitive Behaviors in Android Apps.
Springer International Publishing, 2015.

X. Yuan, O. Setayeshfar, H. Yan, P. Panage, X. Wei, and K. H. Lee,
“Droidforensics: Accurate reconstruction of android attacks via multi-
layer forensic logging,” in ASIA CCS. ACM, 2017.

Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging
in the internet of things,” in NDSS, 2018.

“Event Tracing,” https://docs.microsoft.com/en-us/windows/desktop/
ETW/event-tracing-portal.

“DTrace on FreeBSD,” https://wiki.freebsd.org/DTrace.

National Institute of Standards and Technology, “NIST special publi-
cation 800-53 (rev. 4), security controls and assessment procedures for

[112]

[113]

[114]

[115]

[116]

[117]
[118]
[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

federal information systems and organizations,” 2013.

S. L. Garfinkel, “Automating disk forensic processing with sleuthkit,
xml and python,” in 2009 Fourth International IEEE Workshop on
Systematic Approaches to Digital Forensic Engineering. 1EEE, 2009,
pp. 73-84.

M. H. Ligh, A. Case, J. Levy, and A. Walters, The art of memory
forensics: detecting malware and threats in windows, linux, and Mac
memory. John Wiley & Sons, 2014.

C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using cwsandbox,” in IEEE Symposium on Security
and Privacy (SP), 2007.

X. Chen, H. Irshad, Y. Chen, A. Gehani, and V. Yegneswaran, “Clarion:
Sound and clear provenance tracking for microservice deployments,”
in USENIX Security Symposium, 2021.

P. Datta, I. Polinsky, M. A. Inam, A. Bates, and W. Enck, “Alastor:
Reconstructing the provenance of serverless intrusions,” in USENIX
Security Symposium, 2021.

A. Case and G. G. Richard III, “Memory forensics: The path forward,”
Digital Investigation, vol. 20, pp. 23-33, 2017.

S. Ma, X. Zhang, and D. Xu, “ProTracer: Towards Practical Provenance
Tracing by Alternating Between Logging and Tainting,” in NDSS, 2016.
D. Tarig, M. Ali, and A. Gehani, “Towards Automated Collection of
Application-Level Data Provenance,” in USENIX TaPP, 2012.

R. Hasan, R. Sion, and M. Winslett, “SPROV 2.0: A Highly-
Confgurable Platform-Independent Library for Secure Provenance,” in
ACM CCS, 2009.

P. Macko and M. Seltzer, “A General-purpose Provenance Library,” in
tapp12, ser. TaPP’12, 2012.

Y. Kwon, D. Kim, W. N. Sumner, K. Kim, B. Saltaformaggio,
X. Zhang, and D. Xu, “LDX: Causality inference by lightweight dual
execution,” in ASPLOS. ACM, 2016.

N. Husted, S. Qureshi, D. Tariq, and A. Gehani, “Android provenance:
Diagnosing device disorders,” in USENIX TaPP, 2013.

R. Paccagnella, K. Liao, D. Tian, and A. Bates, “Logging to the
danger zone: Race condition attacks and defenses on system audit
frameworks,” in CCS, 2020.

V. Karande, E. Bauman, Z. Lin, and L. Khan, “SGX-Log: Securing
System Logs With SGX,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, ser. ASIA
CCS 17, 2017.

A. Ahmad, S. Lee, and M. Peinado, “Hardlog: Practical tamper-proof
system auditing using a novel audit device,” in 2022 IEEE Symposium
on Security and Privacy (SP). 1EEE Computer Society, 2022, pp.
1554-1554.

C. Yagemann, M. Noureddine, W. U. Hassan, S. Chung, A. Bates,
and W. Lee, “Validating the integrity of audit logs against execution
repartitioning attacks,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS *21,
2021.

A. Bates, K. R. B. Butler, and T. Moyer, “Take Only What You Need:
Leveraging Mandatory Access Control Policy to Reduce Provenance
Storage Costs,” in tappl5, ser. TaPP’15, 2015.

“About purging reports,” https://support.symantec.com/us/en/article.
howto129116.html, 2019.

“Evaluating Endpoint Products,” https://redcanary.com/blog/evaluating-
endpoint-products-in-a-crowded-confusing-market/, 2018.

H. Ding, S. Yan, J. Zhai, and S. Ma, “Elise: A storage efficient logging
system powered by redundancy reduction and representation learning,”
in 30th USENIX Security Symposium (USENIX Security 21), 2021, pp.
3023-3040.

J. Park, D. Nguyen, and R. Sandhu, “A Provenance-Based Access
Control Model,” in Proceedings of the 10th Annual International
Conference on Privacy, Security and Trust (PST), 2012.

L. Sun, J. Park, and R. Sandhu, “Towards provenance-based access
control with feasible overhead,” in 2014 International Conference on
Information Science, Electronics and Electrical Engineering, vol. 2,
2014.

D. Nguyen, J. Park, and R. Sandhu, “A provenance-based access control
model for dynamic separation of duties,” in 2013 Eleventh Annual
Conference on Privacy, Security and Trust, 2013.

, Adopting Provenance-Based Access Control in OpenStack Cloud
IaaS. Springer International Publishing, 2014.

A. Bates, B. Mood, M. Valafar, and K. Butler, “Towards secure
provenance-based access control in cloud environments,” in ACM

man7.org/linux/man-pages/man8/auditd.8.html/
man7.org/linux/man-pages/man8/auditd.8.html/
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/desktop/ETW/event-tracing-portal
https://docs.microsoft.com/en-us/windows/desktop/ETW/event-tracing-portal
https://wiki.freebsd.org/DTrace
https://support.symantec.com/us/en/article.howto129116.html
https://support.symantec.com/us/en/article.howto129116.html
https://redcanary.com/blog/evaluating-endpoint-products-in-a-crowded-confusing-market/
https://redcanary.com/blog/evaluating-endpoint-products-in-a-crowded-confusing-market/

[137]
[138]

[139]
[140]

[141]

[142]
[143]
[144]

[145]

[146]
[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]
[156]

[157]

[158]

CODASPY, 2013.

“Cypher Query Language,” https://neo4j.com/developer/cypher/, 2021.
D. A. Holland, U. Bruan, D. Maclean, K.-K. Muniswamy-Reddy,
and M. 1. Seltzer, “Choosing a Data Model and Query Language for
Provenance,” in ipaw08, ser. IPAW’08, 2008.

“Neo4j,” https://neodj.com, 2021.

H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “Mica: A holistic
approach to fast in-memory key-value storage,” in NSDI, 2014.

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab et al., “Scaling memcache at
facebook,” in 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), 2013.

“Redis,” https://redis.io/, 2021.

A. Gehani and U. Lindqvist, “Bonsai: Balanced Lineage Authentica-
tion,” in ACSAC, 2007.

T. Mandl, U. Bayer, and F. Nentwich, “Anubis analyzing unknown
binaries the automatic way,” in Virus bulletin conference, vol. 1, 2009,
p. 02.

T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and
A. Kiayias, “Scalability, fidelity and stealth in the drakvuf dynamic
malware analysis system,” in Proceedings of the 30th annual computer
security applications conference, 2014, pp. 386-395.

“Cuckoo Sandbox tool,” https://cuckoosandbox.org/.

C. Willems, R. Hund, and T. Holz, “Cxpinspector: Hypervisor-based,
hardware-assisted system monitoring,” Ruhr-Universitat Bochum, Tech.
Rep, p. 12, 2013.

M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data mining meth-
ods for detection of new malicious executables,” in /EEE Symposium
on Security and Privacy (SP), 2001.

M. Zheng, M. Sun, and J. C. Lui, “Droid analytics: a signature
based analytic system to collect, extract, analyze and associate android
malware,” in 2013 12th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications. 1EEE, 2013,
pp. 163-171.

C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y. Zhou, and
X. Wang, “Effective and efficient malware detection at the end host.”
in USENIX Security Symposium, vol. 4, no. 1, 2009, pp. 351-366.

A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,
“Accessminer: using system-centric models for malware protection,” in
Proceedings of the 17th ACM conference on Computer and communi-
cations security, 2010, pp. 399-412.

L. Liu, S. Chen, G. Yan, and Z. Zhang, “Bottracer: Execution-based
bot-like malware detection,” in International Conference on Informa-
tion Security. Springer, 2008, pp. 97-113.

A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution
paths for malware analysis,” in IEEE Symposium on Security and
Privacy (SP), 2007.

S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-based
online malware detection: Towards efficient real-time protection against
malware,” IEEE transactions on information forensics and security,
vol. 11, no. 2, pp. 289-302, 2015.

“MITRE ATT&CK,” https://attack.mitre.org, 2019.

D. Yang, B. Li, L. Rettig, and P. Cudré-Mauroux, “Histosketch: Fast
similarity-preserving sketching of streaming histograms with concept
drift,” in IEEE ICDM, 2017.

Y. Xie, D. Feng, Z. Tan, and J. Zhou, “Unifying intrusion detection
and forensic analysis via provenance awareness,” Future Generation
Computer Systems, vol. 61, pp. 26-36, 2016.

Y. Xie, D. Feng, Y. Hu, Y. Li, S. Sample, and D. Long, “Pagoda:
A hybrid approach to enable efficient real-time provenance based
intrusion detection in big data environments,” IEEE Transactions on
Dependable and Secure Computing, vol. 17, no. 6, pp. 1283-1296,

[159]

[160]

[161]
[162]
[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]
[172]
[173]
[174]
[175]
[176]
[177]

[178]

[179]

[180]

2018.

Y. Xie, Y. Wu, D. Feng, and D. Long, “P-gaussian: provenance-based
gaussian distribution for detecting intrusion behavior variants using
high efficient and real time memory databases,” IEEE Transactions
on Dependable and Secure Computing, vol. 18, no. 6, pp. 2658-2674,
2019.

FireEye, Inc., “How Many Alerts is Too Many to Handle?”
https://www?2 fireeye.com/StopTheNoise-IDC-Numbers- Game-
Special-Report.html, 2019.

D. Gunning and D. Aha, “Darpa’s explainable artificial intelligence
(xai) program,” Al Magazine, vol. 40, no. 2, 2019.

B. Saltaformaggio, R. Bhatia, Z. Gu, X. Zhang, and D. Xu, “Guitar:
Piecing together android app guis from memory images,” in CCS, 2015.
F. Pagani and D. Balzarotti, “Back to the whiteboard: a principled ap-
proach for the assessment and design of memory forensic techniques,”
in USENIX Security Symposium, 2019.

M. Alazab, S. Venkatraman, and P. Watters, “Effective digital forensic
analysis of the ntfs disk image,” Ubiquitous Computing and Commu-
nication Journal, vol. 4, no. 1, pp. 551-558, 2009.

S. L. Garfinkel, “Automating disk forensic processing with sleuthkit,
xml and python,” in 2009 Fourth International IEEE Workshop on
Systematic Approaches to Digital Forensic Engineering. 1EEE, 2009,
pp. 73-84.

F. Adelstein, “Live forensics: diagnosing your system without killing
it first,” Communications of the ACM, vol. 49, no. 2, pp. 63-66, 2006.
E. Casey and G. J. Stellatos, “The impact of full disk encryption on
digital forensics,” ACM SIGOPS Operating Systems Review, vol. 42,
no. 3, pp. 93-98, 2008.

C. C.-C. Cheng, C. Shi, N. Z. Gong, and Y. Guan, “Logextractor:
Extracting digital evidence from android log messages via string and
taint analysis,” Forensic Science International: Digital Investigation,
vol. 37, p. 301193, 2021.

K. H. Lee, X. Zhang, and D. Xu, “LogGC: Garbage Collecting
Audit Log,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer and Communications Security, ser. CCS *13. ACM, 2013.
Symantec EDR 4.6 Docs, “How Symantec EDR purges data
from the Symantec EDR database,” https://techdocs.broadcom.
com/us/en/symantec-security-software/endpoint-security-and-
management/endpoint-detection-and-response/4-6/Settings/how-
purges-data-from- the- database-v106460598-d38e46998.html, 2022.
“Darpa transparent computing. 2020. transparent computing engage-
ment 3 data release,” 2020.

J. Leskovec, “Stanford network analysis package,” Online, http://snap.
stanford. edu, 2009.

“Crowd Strike,” https://www.crowdstrike.com/blog/tech-center/hunt-
crowdstrike-falcon/.

“Sophos,” https://support.sophos.com/support/s/article/KB-
00003635971anguage=en_US.

“Comodo,” https://help.comodo.com/topic-444-1-905-11917-.html.

C. Cimpanu, “Hackers are increasingly destroying logs to hide
attacks,” https://www.zdnet.com/article/hackers-are-increasingly-
destroying-logs-to-hide-attacks/, last accessed 04-20-2019.

S. Hales, “Last door log wiper,” https://packetstormsecurity.com/files/
118922/LastDoor.tar, last accessed 04-20-2019.

A. A. Yavuz and P. Ning, “Baf: An efficient publicly verifiable
secure audit logging scheme for distributed systems,” in 2009 Annual
Computer Security Applications Conference. 1EEE, 2009.

S. A. Crosby and D. S. Wallach, “Efficient data structures for tamper-
evident logging.” in USENIX Security Symposium, 2009.

C. Yagemann, M. Noureddine, W. U. Hassan, S. Chung, A. Bates,
and W. Lee, “Validating the integrity of audit logs against execution
repartitioning attacks,” in CCS, 2021.

https://neo4j.com/developer/cypher/
https://neo4j.com
https://redis.io/
https://cuckoosandbox.org/
https://attack.mitre.org
https://www2.fireeye.com/StopTheNoise-IDC-Numbers-Game-Special-Report.html
https://www2.fireeye.com/StopTheNoise-IDC-Numbers-Game-Special-Report.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-detection-and-response/4-6/Settings/how-purges-data-from-the-database-v106460598-d38e46998.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-detection-and-response/4-6/Settings/how-purges-data-from-the-database-v106460598-d38e46998.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-detection-and-response/4-6/Settings/how-purges-data-from-the-database-v106460598-d38e46998.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-detection-and-response/4-6/Settings/how-purges-data-from-the-database-v106460598-d38e46998.html
https://www.crowdstrike.com/blog/tech-center/hunt-crowdstrike-falcon/
https://www.crowdstrike.com/blog/tech-center/hunt-crowdstrike-falcon/
https://support.sophos.com/support/s/article/KB-000036359?language=en_US
https://support.sophos.com/support/s/article/KB-000036359?language=en_US
https://help.comodo.com/topic-444-1-905-11917-.html
https://www.zdnet.com/article/hackers-are-increasingly-destroying-logs-to-hide-attacks/
https://www.zdnet.com/article/hackers-are-increasingly-destroying-logs-to-hide-attacks/
https://packetstormsecurity.com/files/118922/LastDoor.tar
https://packetstormsecurity.com/files/118922/LastDoor.tar

	Introduction
	Data Provenance Primer
	provenance-based system auditing
	Capture Layer
	Reduction Layer
	Infrastructure Layer
	Detection Layer
	Investigation Layer
	Alert Correlation
	Alert Triage
	Log Integration
	Behavior Diagnosis

	Efficiency Analysis of Reduction Techniques
	Dataset
	Measurement Setup
	Space Efficiency of Individual Techniques
	Variance in Space Efficiency By Workload
	Synergy Between Reduction Techniques
	Synergy with Compression
	Forensic Utility of Reduced Logs

	Future Directions
	Conclusion

