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Abstract

Mobile fitness tracking apps allow users to track their
workouts and share them with friends through online so-
cial networks. Although the sharing of personal data
is an inherent risk in all social networks, the dangers
presented by sharing personal workouts comprised of
geospatial and health data may prove especially grave.
While fitness apps offer a variety of privacy features, at
present it is unclear if these countermeasures are suffi-
cient to thwart a determined attacker, nor is it clear how
many of these services’ users are at risk.

In this work, we perform a systematic analysis of
privacy behaviors and threats in fitness tracking social
networks. Collecting a month-long snapshot of pub-
lic posts of a popular fitness tracking service (21 mil-
lion posts, 3 million users), we observe that 16.5% of
users make use of Endpoint Privacy Zones (EPZs), which
conceal fitness activity near user-designated sensitive lo-
cations (e.g., home, office). We go on to develop an
attack against EPZs that infers users’ protected loca-
tions from the remaining available information in pub-
lic posts, discovering that 95.1% of moderately active
users are at risk of having their protected locations ex-
tracted by an attacker. Finally, we consider the efficacy
of state-of-the-art privacy mechanisms through adapting
geo-indistinguishability techniques as well as developing
a novel EPZ fuzzing technique. The affected companies
have been notified of the discovered vulnerabilities and
at the time of publication have incorporated our proposed
countermeasures into their production systems.

1 Introduction

Fitness tracking applications such as Strava [23] and
MapMyRide [1] are growing increasingly popular, pro-
viding users with a means of recording the routes of
their cycling, running, and other activities via GPS-based

*Joint first authors.

tracking (i.e., self-tracking [44]). These apps sync to
a social network that provides users with the ability to
track their progress and share their fitness activities with
other users. The ability to share fitness activities is an es-
sential ingredient to the success of these services, moti-
vating users to better themselves through shared account-
ability with friends and even compete with one another
via leaderboards that are maintained for popular routes.

Although the sharing of personal data is an inherent
risk in all social networks [42, 45, 48, 53, 56], there are
unique risks associated with the data collected by fitness
apps, where users share geospatial and temporal infor-
mation about their daily routines, health data, and lists of
valuable exercise equipment. While these services have
previously been credited as a source of information for
bicycle thieves (e.g., [6, 17]), the true risk of sharing this
data came to light in January 2018 when Strava’s global
heat map was observed to reveal the precise locations of
classified military bases, CIA rendition sites, and intel-
ligence agencies [24]. Fitness activity is thus not only a
matter of personal privacy, but in fact is “data that most
intelligence agencies would literally kill to acquire” [46].

In response to public criticism over the global heat
map incident, Strava has pointed to the availability of
a variety of privacy protection mechanisms as a means
for users to safeguard their accounts [5S0] — in addition
to generic privacy settings, domain-specific mechanisms
such as Endpoint Privacy Zones (EPZs) conceal fitness
activity that occurs within a certain distance of sensitive
user locations such as homes or work places [15, 16, 13].
However, at present it is unclear if such features are
widely used among athletes, nor is it clear that these
countermeasures are adequate to prevent attackers from
discovering the private locations of users.

In this work, we perform a systematic analysis of pri-
vacy threats in fitness tracking social networks. We begin
by surveying the fitness app market to identify classes of
privacy mechanisms. Using these insights, we then for-
malize an attack against the Endpoint Privacy Zones fea-
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Figure 1: Summary of a Strava running activity that occurred in Austin, Texas during USENIX Security 2016. Figure 1a displays
the full exercise route of the athlete. Figure 1b shows the activity after an Endpoint Privacy Zone (EPZ) was retroactively added,
obscuring the beginning and end parts of the route that fell within % miles of the Hyatt Regency Austin hotel.

ture. To characterize the privacy habits of users, we col-
lect a month-long activity dataset of public posts from
Strava, an exemplar fitness tracking service. We next
use this dataset to evaluate our EPZ attack, discovering
that 95.1% of regular Strava users are at risk of having
their homes and other sensitive locations exposed. We
demonstrate the generality of this result by replicating
our attack against data collected from two other popular
fitness apps, Garmin Connect and Map My Tracks.
These findings demonstrate privacy risks in the state-
of-the-practice for fitness apps, but do not speak to the
state-of-the-art of location privacy research. In a final
series of experiments, we leverage our Strava dataset
to test the effectiveness of privacy enhancements that
have been proposed in the literature [26, 27]. We first
evaluate the EPZ radius obfuscation proposed by [27].
Next, we adapt spatial cloaking techniques [41] for use
in fitness tracking services in order to provide geo-
indistinguishability [26] within the radius of the EPZ.
Lastly, we use insights from our attack formalization to
develop a new privacy enhancement that randomizes the
boundary of the EPZ in order to conceal protected lo-
cations. While user privacy can be improved by these
techniques, our results point to an intrinsic tension that
exists within applications seeking to share route infor-
mation and simultaneously conceal sensitive end points.
Our contributions can be summarized as follows:

e Demonstrate Privacy Leakage in Fitness Apps. We
formalize and demonstrate a practical attack on the
EPZ privacy protection mechanism. We test our at-
tack against real-world EPZ-enabled activities to de-
termine that 84% of users making use of EPZs unwit-
tingly reveal their sensitive locations in public activity
posts. When considering only moderate and highly
active users, the detection rate rises to 95.1%.

e Characterize Privacy Behaviors of Fitness App Users.
We collect and analyze 21 million activities represent-
ing a month of Strava usage. We characterize demo-
graphic information for users and identify a significant

demand for privacy protections by 16.5%, motivating
the need for further study in this area.

e Develop Privacy Extensions. Leveraging our
dataset of public activity posts, we evaluate the effec-
tiveness of state-of-the-art privacy enhancements (e.g.,
geo-indistinguishability [26]) for solving problems in
fitness tracking services, and develop novel protec-
tions based on insights gained from this study.

e Vulnerability Disclosure. ~ We have disclosed these
results to the affected fitness tracking services (Strava,
Garmin Connect, and Map My Tracks). All companies
have acknowledged the vulnerability and have incor-
porated one or more of our proposed countermeasures
into their production systems. !

2 Fitness Tracking Social Networks

Popularized by services such as Strava [23], fitness track-
ing apps provide users the ability to track their outdoor
fitness activities (e.g., running) and share those activi-
ties with friends as well as other users around the world.
Leveraging common sensors in mobile devices, these
services track users’ movements alongside other met-
rics, such as the altitude of the terrain they are travers-
ing. After completing a fitness activity, users receive a
detailed breakdown of their activities featuring statistics
such as distance traveled. If the user pairs a fitness moni-
tor (e.g., Fitbit [3]) to the service, the activity can also be
associated with additional health metrics including heart
rate. Beyond publishing activities to user profiles, fit-
ness tracking services also offer the ability for users to
create and share recommended routes (segments). Each
segment is associated with a leaderboard that records the
speed with which each user completed it. Most fitness
tracking services also contain a social network platform
through which users can follow each other [12, 18, 23].

'A summary of the disclosure process as well a statement on the
ethical considerations of this work can be found in Section 9.
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[min,max], inc
Strava [23] 10M v v v v [201,1005], 201
Garmin [12] 10M v v X v [100,1000], 100
Runtastic [22] 10M v X v X -
RunKeeper [21] 10M v v X X
Endomondo [20] | 10M X v X X
MapMyRun [1] M v v X X
Nike+ [7] M v v X X
Map My
Tracks [18] M X v X v [500,1500], 500

Table 1: Summary of privacy features offered across different
popular fitness tracking services. #D/Ls: downloads (in mil-
lions) on Android Play store. EPZ radius given in meters.

Followers are granted additional access to user informa-
tion that may not be publicly available, such as the list of
equipment that the user owns.

As is evident from the features described above, fit-
ness tracking services share a variety of highly sensitive
user information, including spatial and temporal where-
abouts, health data, and a list of valuable equipment that
is likely to be found in those locations. Recognizing the
sensitivity of this information, these services offer a va-
riety of privacy mechanisms to protect their users. We
conducted a survey of privacy mechanisms across 8 pop-
ular fitness networks, and present a taxonomy of these
features in Table 1. Popular mechanisms include:

F1 Private Profiles/Activities: As is common across
many social networks, users have the ability to make
their posts or profiles private. Depending on the ser-
vice, users can elect to make all activities private or
do so on a case-by-case basis. However, hidden ac-
tivities are not counted towards challenges or segment
leaderboards, incentivizing users to make their activ-
ities public. Of the surveyed services, only Garmin
Connect enables private activities by default.

Block Users: Like other social networks, users have
the ability to block other users, removing them from
their follower’s list, and preventing them from viewing
their activities or contacting them. However, as posts
are public by default on many services, the ability to
block a user offers limited utility.

F2

Endpoint Privacy Zone: Since users will often start
their activities at sensitive locations, several services
allow users the option to obfuscate routes within a cer-
tain distance of a specified location. In this paper, we
refer to this general mechanism as an Endpoint Pri-
vacy Zone (EPZ) [15]. If an activity starts or ends
within an EPZ, the service will hide the portion of the
user’s route within the EPZ region from being viewed
by other users. We provide a formal definition of an
EPZ in Section 3. An example is shown in Figure
1; after enabling an EPZ, the full route (Fig. 1la) is

F3

(b) As activities increase, possible EPZs are eliminated.

Figure 2: Simplified activity examples that demonstrate the in-
tuition behind our EPZ identification approach. Red lines rep-
resent activity routes, while circles represent possible EPZs. In
Fig. 2a, given the available routes there are multiple possible
EPZs of different radii, only one of which is correct. In Fig. 2b,
an additional activity reduces the space of possible EPZs to one.

truncated such that segments of the route are not visi-
ble within a certain radius of a sensitive location (Fig.
1b).2 Unfortunately, there are also disincentives to
leveraging the privacy zones. For example, Strava and
Garmin Connect users will not appear on leaderboards
for routes that are affected by their privacy zone.

EPZ Radius Size: All three services (Strava, Garmin
Connect, Map My Tracks) that provide an EPZ fea-
ture, allow users the option of selecting a circular ob-
fuscation region from a fixed set of radius size val-
ues. Different services provide different minimum and
maximum radius sizes with fixed increments to in-
crease and decrease the size of EPZ radius. For ex-
ample, Garmin Connect allows users to select a mini-
mum and a maximum radius of 100 and 1000 meters
with 100 meters increments.

F4

2These images are being used with the permission of the athlete
and do not leak any personally identifiable information as the pictured
activity took place on site at a conference.
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3 You can run, but can you hide?

In this section, we set out to determine whether or not
fitness tracking services’ users’ trust in the EPZ mecha-
nism is misplaced. To do so, we present an efficient at-
tack methodology for identifying EPZs. As discussed in
Section 2, EPZs place a hidden circle around the user’s
private location in order to prevent route data within a
given radius of that location from appearing on activity
webpages. The hidden part of the route is only visible
to the owner of the activity. Moreover, the number of
allowed EPZ radius sizes are fixed based on the fitness
tracking service. For example, Strava provides a fixed
set of EPZ radii of %, %, %, %, or % of a mile.

It may be intuitive to the reader that, given a finite set
of possible circle radii and a handful of points that in-
tersect the circle, the center of the circle (i.e., a user’s
protected location) is at risk of being inferred. Figure
2 demonstrates this intuition for EPZs. When only one
route intersection point is known, there is a large space
of possible EPZ locations; however, given two intersec-
tion points, the number of possible EPZs is dramatically
reduced, with the only remaining uncertainty being the
radius of the circle (Figure 2a). Given three distinct in-
tersection points (Figure 2b), it should be possible to re-
liably recover the EPZ radius and center.

In spite of this intuition, it is not necessarily the case
that EPZs are ineffective in practice; a variety of factors
may frustrate the act of EPZ identification. First, services
that offer EPZ mechanisms do not indicate to users when
an EPZ is active on a route. Instead, as shown in Fig-
ure 1, the route is redrawn as if the activity started and
finished outside of the invisible EPZ. Even if an activ-
ity is known to intersect an EPZ, it is not obvious which
side of the route (beginning or end) the EPZ intersects.
Activity endpoints that intersect an EPZ are therefore in-
distinguishable from endpoints that do not, creating sig-
nificant noise and uncertainty when attempting to infer
a protected location. Moreover, the GPS sampling fi-
delity provided by fitness tracking devices and services
may be such that the exact point where a route intersects
an EPZ may be irrecoverable. Alternately, it may also be
that EPZs are recoverable in only highly favorable condi-
tions, making the identification of fitness tracking service
users at scale impractical.

3.1 Threat Model

We consider an adversary that wishes to surreptitiously
identify the protected home or work locations of a tar-
get user on a fitness tracking service. Through the use of
a dummy account, the adversary learns how the fitness
tracking service protects private locations, as described
in Section 2. However, the attacker is unaware of the

target user’s protected location, and moreover is uncer-
tain if the target has even registered a protected location.
To avoid arousing suspicion, the attacker may surveil the
target user in any number of ways — by following the
user’s profile from their own account, or querying the
target user’s data via a service API. Regardless of the
means, the singular goal of the adversary is to determine
the existence of an EPZ and recover the protected address
using only fitness activities posted to the users’ account.

3.2 Breaking Endpoint Privacy Zones

Problem Formulation. ~ We formulate our problem as
the EPZ Circle Search Problem in the Cartesian plane.
We convert GPS coordinates of the activities to Earth-
Centered Earth-Fixed (ECEF) coordinates in the Carte-
sian plane. The details of conversion can be found
in [57]. This is justified by the fact that both services
and protocols such as GPS cannot provide arbitrary ac-
curacy. Moreover, this makes the attack algorithm calcu-
lations easier without loss of important information. We
first proceed to give a formal definition of EPZ and use
this definition for remainder of section.

Definition 1. Endpoint Privacy Zone. Let point p; =
(x5,¥5) be a sensitive location in the Cartesian plane, and
a be an activity route of n points < p1,...,pn >. EPZ, ,
is a circle with center pg and radius r that is applied to
activity a if py or p, are within distance r of ps. If this is
the case, all points p; in a that are within distance r of pg
are removed from a.

With this in mind, the definition of the EPZ Circle
Search Problem is as follows:

Definition 2. EPZ Circle Search Problem. Let EPZ, ,
be an active EPZ where r is in the set Rg provided by
service S, and let A, be the set of activity routes for user
u of the form < p1,...,p, >. In the EPZ search problem,
the goal is to guess (pg,ty € Rs) such that EPZ,, ,, best
fits endpoints py and p,, for all activities in A,.

g:Tg

In order to identify a suitable algorithm for EPZ search
problem, we first looked into circle fit algorithms. Cir-
cle fit algorithms take sets of Cartesian coordinates and
try to fit a circle that passes through those points. The
most studied circle fit algorithm is Least Squares Fit
(LSF) [40] of circle. This method is based on minimiz-
ing the mean square distance from the circle to the data
points. Given n points (x; , y;), 1 < i < n, the objective
function is defined by

F=yd ()
i=1
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where d; is the Euclidean (geometric) distance from the
point (x; , ;) to the circle. If the circle satisfies equation

(x—a)+(—b)>=r )

where (a, b) is its center and r its radius, then

di=\/(xi—a)P+ (=) —r 3)

Limitations of LSF.  The minimization of equation 1
is a nonlinear problem that has no closed form solution.
There is no direct algorithm for computing the minimum
of F, all known algorithms are iterative and costly by na-
ture [32]. Moreover, the LSF algorithm also suffers from
several limitations when applied to EPZ Circle Search
Problem. The first limitation is that the adversary is not
sure which points in an activity intersect the EPZ. There
can be up to 4 endpoints in a modified route, but at most
two of these points intersect the EPZ. Feeding one of the
non-intersecting points into LSF will lead to an inaccu-
rate result. Therefore, the adversary must run the LSF al-
gorithm with all possible combinations of endpoints and
then pick the result that minimizes . However, we dis-
covered through experimentation that the LSF algorithm
is prohibitively slow for large sets of activities. The third
limitation is that LSF considers circles of all possible
radii. However, in the case of fitness tracking services
context, the algorithm need only consider the small finite
set of radii Ryg.

In order to overcome above limitations, we devised a
simpler and more efficient algorithm that fits our needs.
We will first give a strawman algorithm to search EPZ
then we will refine this algorithm in various steps.

ALGORITHM STRAWMAN.  Given a set of activities
A, and possible radii Ry, iterate through pairs of activ-
ities and perform pairwise inspection of each possible
combination of endpoints. For each pair of endpoints
(x1,¥1), (x2,2), solve the simultaneous equations:

(xe —x1)2 + (e —y1)? = 1* 4)
(xe —x2)2 4+ (ye —y2)? =17 (5)

where r is one of the radius from Rg and (x.,y.) is
the center of a possible EPZ. Store each solution for the
simultaneous equations as a candidate EPZs in set SS.
When finished, return a randomly selected item in SS as
a guess for the protected location.

Refinement #1 (Confidence Score & Threshold):
The above algorithm is not deterministic — multiple EPZs
are predicted by the algorithm, but only one is the cor-
rect one for the given user u. Pruning these possibili-
ties requires the introduction of a metric to indicate that
one candidate EPZ is more likely to be correct than the
others. We observe that the correct EPZ prediction will

Algorithm 1: EPZ Search Algorithm

Inputs : A, 7, T, T, Rs
Output: KeyValueStore of EPZ, confidence level

1 PossibleEPZs < KeyValueStore()
2 foreach (A, Ay) € A, do

/* 6 possible point pairs are generated. ¥
3 PointPairs < Pairs of start and end points from A; and A,
4 foreach Point Pair € PointPairs do
/* For each possible EPZ radius. *
5 foreach r € Ry do
6 ‘ SS < Solve simultaneous eq. for r, Point Pair
7 end
8 end
9 foreach EPZ € SS do
10 |  PossibleEPZs[EPZ] + 1
11 end
12 end
13 foreach EPZ € PossibleEPZs do
14 foreach (A) € A, do
/* Haversine formula calc. dist. between coords. *
/* Refinement #3 */
15 if EPZ.R — Haversine(EPZ,A) > t; then
16 |  Delete(PossibleEPZs[EPZ;))
17 end
18 end
19 foreach EPZ, € PossibleEPZs do
20 foreach EPZ, € PossibleEPZs do
2 if EPZ, # EPZ, then
/* Refinement #2 */
22 if Haversine(EPZ,,EPZ,) < t; then
23 PossibleEPZs|EPZ,]+ = PossibleEPZs|EPZ;]
24 Delete(PossibleEPZs|EPZ;])
25 end
26 end
27 foreach key,value € PossibleEPZs do
/* Refinement #1 *
28 if value < 7, then
29 |  Delete key from PossibleEPZs

30 end
31_return PossibleEPZs

occur most often; this is because all endpoint pairs that
intersect the EPZ will produce the same result, whereas
endpoint pairs that do not intersect the EPZ will produce
different results each time. Therefore, we introduce a
consensus procedure to select our prediction from the set
of candidate EPZs. A confidence score is assigned to
each EPZ, where the value of this metric is the number
of activity start/end points that independently agree on
the location of the EPZ. To prevent our algorithm from
issuing a bad prediction when insufficient information
(i.e., activities) is available, we also introduce a confi-
dence threshold t.. T, represents the minimum confi-
dence score needed to qualify as an EPZ prediction. If a
candidate EPZ is less than the confidence threshold, then
it is removed from consideration. The final prediction of
the algorithm, if any, is the candidate EPZ with the high-
est confidence score exceeding 7., as shown in line 28 of
Algorithm 1.

Refinement #2 (Distance Similarity Threshold):
Due to sampling noise and imprecision in the GPS
coordinates made available by fitness tracking de-
vices/services, it may be that activity endpoints do not
lie exactly on the EPZ circle. As a result, our algorithm
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will predict slightly different p, values for different end-
points pairs, even when considering endpoints that truly
intersect the EPZ. Our algorithm will not be able to accu-
mulate confidence in a given prediction unless we can ac-
count for this noise. Therefore, we introduce a distance
similarity threshold t;. When comparing two candidate
EPZs to one another, the refined algorithm considers two
circles as same if the distance between the centers is less
than or equal to this threshold. 7, is used in the Algo-
rithm 1 from line 19 to line 26.

Refinement #3 (Activity Intersection Threshold):
To reduce the space of candidate EPZs, we can lever-
age the knowledge that no endpoint from any activity in
the set A, should fall within the candidate EPZ’s circle,
as this necessarily implies that an EPZ was not active in
that area for user u. However, we must also account for
measurement error when performing this test — due to
noise in GPS sampling, there is a chance that an activity
passing nearby the area of the candidate EPZ could pro-
duce endpoints that appear to lie within the circle. This
would result in ruling out a candidate EPZ that may in
fact be the true EPZ. To mitigate this problem, we in-
troduce an activity intersection threshold t;. Our refined
algorithm does consider an endpoint to intersect a candi-
date EPZ unless it falls more than t; within the EPZ cir-
cles, as shown in the Algorithm 1 from line 13 to line 18.

ALGORITHM REFINED. Extending our original
strawman algorithm, our final refined algorithm is shown
in Algorithm 1. Given as input a set of activities for a
single user A,, distance similarity threshold 7,, activity
intersection threshold 7;, confidence threshold 7., and set
of EPZ radii Rg, the algorithm returns all the candidate
EPZs with their confidence value, with the highest confi-
dence point p, representing a prediction for u’s protected
location. Note that value of thresholds depend on the fit-
ness tracking service and require training runs to param-
eterize. We will describe our procedure for finding these
threshold values in Section 5.

4 Data Collection’

To evaluate the plausibility of the above EPZ attack al-
gorithm, we require a large corpus of naturalistic usage
data for a fitness tracking app. Strava is one of the most
popular fitness tracking apps, with over a million ac-
tive monthly users [2] and over a billion total activities
recorded so far. We thus select it as an exemplar fitness
tracking app.* In this section, we describe our methodol-
ogy for collecting usage information from public Strava
posts. In characterizing the resulting dataset, we also

3This section describes a methodology that is no longer feasible
on Strava following changes made in response to our disclosure.

4 Although our approach is primarily evaluated on Strava, note that
in § 7 we demonstrate the generality of the attack using other services.

provide useful insights as to the privacy habits of the ath-
letes on fitness tracking apps.

4.1 Methodology

We begin by collecting a large sample of public posts to
the Strava using a cURL-based URL scraping script. Be-
cause Strava assigns sequential identifiers to activities as
they are posted, our scraper was able to traverse posts
to the network in (roughly) chronological order. It was
also able to obtain data resources for each post in JSON-
encoded format using an HTTP REST API. Our scraper
did not collect data from private activities, only the infor-
mation available in public posts. In fact, it was not neces-
sary to be logged into Strava in order to access the sites
visited by our scraper. These features have previously
been used by other members of the Strava community in
order to measure various aspects of the service [8, 9, 10].

The scraper takes as input a start and an end activ-
ity ID, then iterates across the continuous sequence of
activity IDs. For each ID, the crawler first visits the
strava.com/activities/ID page to extract the activity’s
start date and time, Athlete ID, total distance, total dura-
tion, reported athlete gender, and the type of the activity.
It then uses the strava.com/stream/ID API to extract
GPS samples for the activity route, as well as the total
distance traveled at each GPS sample. The scraper uses
the first GPS coordinate in the route to obtain the country
of the activity. Using an additional API that facilitates in-
teroperability between Strava and other social networks,
the scraper recovers the time the activity was posted, then
subtracts the length of the activity to approximate the
start time. Through experimentation, we discovered that
when an activity is associated with an EPZ, there is a
discrepancy between the advertised distance on the ac-
tivity page and the final distance traveled according to
the GPS samples; the crawler check-marks the activity
as EPZ-enabled if this discrepancy is found.

4.2 Data Corpus

Using the above methodology, we collected a month
worth of Strava activities beginning on May 1, 2016. The
activity IDs associated with May 1 and May 31 were
identified by conducting a binary search of the activ-
ity space and verified through manual inspection. How-
ever, we note that activity IDs are assigned in roughly
chronological order; we observed activities that appeared
months to years out of sequence. We attribute this behav-
ior to devices that had intermittent network connectivity
and to users that deliberately set their device to the in-
correct date. It is therefore likely that our dataset omits a
small percentage of activities that occurred in May 2016.
Scraped activities that fell outside of May 2016 were dis-
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carded from the dataset. Running our scraper across 15
CPU threads, the dataset took 14 days to collect.

Initially, the dataset contained over 23,925,305 activ-
ities. Three types of activities were discarded: 1) Pri-
vate activities for which we did not retrieve any usage
information, 2) Activities with 0.0 distance that did not
have any route information, and 3) Activities with type
other than Walk, Ride, and Run . We observed 8 differ-
ent activity types (Ride, Run, Walk, Hike, Virtualride,
Swim, Workout, and others) in our dataset, with Ride,
Run, and Walk comprised the 94% of total activities.
Other activity types (e.g., workouts) were excluded be-
cause they were unlikely to be actual GPS routes or pro-
tected locations, while others (e.g., Virtual-ride) likely
reported false GPS routes. The remaining dataset con-
tained 20,892,606 activities from 2,960,541 athletes.

We observed a total of 2,360,466 public activities that
were associated with an EPZ; as a point of comparison,
this is more than twice the number of (excluded) private
activities (1,080,484), underscoring the popularity of the
EPZ feature. The use of EPZs is spread out across a large
number of users, with 432,022 athletes being associated
with at least one EPZ activity and 346,433 being asso-
ciated with more than one EPZ activity. Total activities
by male-identifying athletes are 16,703,160 and female-
identifying are 3,227,255, while 962,191 activities report
no gender identity. A diurnal pattern is observable in
the distribution of activities by time of day, as shown in
Figure 3. 545,997 users are not regularly active in our
dataset, logging only one activity; however, as shown
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Figure 5: Most popular countries in our dataset.

in Figure 4, the dataset reflects a healthy variety of us-
age levels, with many athletes logging over 100 activities
during the month. We also note the the diverse demo-
graphic makeup of our dataset. Figure 5 shows the in-
ternational popularity of Strava. While the United States
(US) and Great Britain (GB) are the most active coun-
tries by a significant margin, 21 other countries contain
at least 150,000 activities, with 241 countries appearing
in the dataset overall.’

5 Evaluation®

We now leverage our activity dataset comprised of Strava
public posts to perform a large-scale privacy analysis of
EPZ mechanism. To establish ground truth with which
to measure the accuracy of our EPZ identification algo-
rithm, we first create a synthetic set of EPZ-enabled ac-
tivities using unprotected routes for which the true end-
points are known. After validating our approach, we then
quantify the real-world severity of this danger by running
our algorithm against legitimate EPZ-enabled activities.
We discover that the EPZ mechanism in fact leaks signif-
icant information about users’ sensitive locations to the
point that they can be reliably inferred using only a hand-
ful of observations (i.e., activities).

5.1 Validation

In order to verify that our algorithm works as intended,
we require a ground truth that will enable us to issue pre-
dictions over EPZs with known centers. To do so, we
make use of the 18,532,140 unprotected activities gen-
erated by 2,528,519 athletes in our Strava dataset. For
each athlete, we search across their activities for end-
points that fall within 50 meters of one another; this dis-
tance approximates size of a suburban house plot. We
then designate the centroid of these points as a protected

SWhile we took every effort to remove virtual activities from our
dataset, we do not rule out the possibility that some activities were
generated by exercise equipment training routines.

SThis section describes the results based on Strava’s previous EPZ
mechanism, which was replaced following our vulnerability disclosure.
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Figure 6: Distribution of identified EPZs by radius. This find-
ing suggests that the smallest privacy zone is significantly more
popular than larger privacy zones.

location, synthesize an EPZ with a radius of 0.25 miles
over the centroid, and update the GPS data by removing
all points that fall within the synthetic EPZ. Finally, our
identification algorithm attempts to independently pre-
dict the (known) center of each (synthesized) EPZ.

As discussed in Section 3, our algorithm is parameter-
ized by three thresholds: ?4, 7., and t;. To determine ef-
fective values for these parameters, we withheld from the
above synthetic data a set of 10,000 athletes. We deter-
mined that an appropriate value for the distance thresh-
old 7; was 0.05 meters and #; was 0.1 meters. We set
our confidence threshold . to 3, because our predictions
were never conclusive using just two activities, as dis-
cussed below. We note that these values need to be ad-
justed for different services, or as Strava modifies the
sampling/precision of its GPS coordinates’. Using these
parameters, we were able to identify 96.6% athletes out
of 2,518,519. As noted previously, our identification al-
gorithm is not deterministic; however, by selecting the
highest confident candidate EPZ, we were able to cor-
rectly predict 96.6% of EPZs in the synthesized set.

Failure Conditions.  For 3.4% of athletes, we were un-
able to identify an EPZ. The reason for this is almost
entirely due to a lack of available observations. If only
two activities were available for a given athlete, it was
common that only two points would intersect the EPZ.
With only two intersection points, five candidate EPZ of
equal likelihood are discovered, one for each of the pos-
sible radii. This motivates our decision to set ¢, to 3, as
it removes a failure condition that would lead to a high
false positive rate in the subsequent tests. Only in rare in-
stances were more than two intersections obtained from
just two activities.

"Between our preliminary experiments and data collection, Strava
increased the granularity of their sampling rate by a factor of 5.
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Figure 7: CDFs for identified versus unidentified locations
across various metrics. Activity count is the greatest predic-
tor of successful identification, suggesting that our technique
would be more successful over a longer period of observation.

5.2 Results for EPZ Identification

Having validated the effectiveness of our technique
against a synthesized dataset, we now turn our attention
to identifying actual protected locations of actual Strava
athletes. We ran our algorithm, as parameterized above,
against our dataset of 2,360,466 EPZ-enabled activities
generated by 432,022 athletes. Using our technique, we
were able to identify 84% of all users protected locations
with more than one EPZ-enabled activity. Under favor-
able conditions in which a user records at least 3 EPZ-
enabled activities, our accuracy increases to 95.1%.
Figure 6 summarizes the protected locations identified
by EPZ radius size. As we will demonstrate in Section 6,
the effectiveness of our algorithm degrades against large
EPZ radii, due solely to their propensity to obscure en-
tire activities; in fact, for EPZ radii of 0.625 miles, we
see the accuracy of our approach falls to 44% against
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Figure 8: Obfuscation techniques for EPZs. The original EPZ circle is shown in white, while the enhanced EPZ circle is shown in
green. In Figure 8b, the circle is unmodified but each activity route truncated by a random number of coordinates.

synthetic data. However, this decrease in efficacy alone
does not account for the large difference in frequency
of EPZ size. For example, if each radius were equally
popular, we would have expected to identify 80,000 ath-
letes with the 0.625 mile radius. As a result, this figure
most likely reflects the distribution of EPZ radii popular-
ity. We therefore infer that the smallest EPZ is several
times more popular than any other EPZ size, and that the
popularity of EPZs are inversely correlated to their radii.

We also wished to characterize the circumstances un-
der which our technique succeeded and failed. Fig-
ure 7 shows the cumulative density functions (CDFs) of
identified locations and unidentified locations across sev-
eral different potentially influential metrics: the activities
count for the athlete (Fig. 7a), the total distance traveled
by the athlete (Fig. 7b), and the total duration of ath-
lete activity (Fig. 7c). The greatest predictor of whether
or not a protected location is leaked is the total number
of activities observed. Locations that were not identified
had an average of 4.6 activities, whereas locations that
were identified had an average of 6.2 activities. Recall
our dataset is comprised of a single month of Strava ac-
tivity; this finding indicates that, over a prolonged win-
dow, the number of leaked locations is likely to be much
larger than 95.1% amongst regular users of Strava.

Failure Condition.  For 16% of the 432,022 total ath-
letes that logged an EPZ-enabled activity, we were un-
able to detect the protected location. The reason for this
is, like in our validation study, there were a number of
athletes with too few activities to exceed the 7. confi-
dence threshold. Out of the total number of athletes, we
found that 11% had recorded 1 activity and out of this set,
zero protected locations were identified. To demonstrate,
we filtered low-activity athlete accounts and considered
only the remaining 283,920 athletes. Our algorithm iden-
tified 95.1% of the protected locations for these moder-
ately active users (3+ EPZ-enabled activities). The re-
maining 4.9% are accounted for by athletes that logged
a single activity for multiple distinct EPZs that did not
intersect. For example, one athlete recorded an EPZ-

enabled activity in two different cities. These findings
indicate that the EPZ mechanism is ineffective even for
moderately active users of fitness tracking services.

6 Countermeasures

While the EPZ mechanism is widely used by fitness
tracking services, it lags behind the state-of-the-art in
location privacy research. In this section, we address
this gap in the literature by testing state-of-the-art pri-
vacy mechanisms against our Strava dataset, as well as
proposing our own defense that fuzzes the boundaries of
EPZs in order to frustrate our attack.

6.1 Obfuscation techniques

Location obfuscation techniques are complementary to
anonymity; rather than hiding user identities, location
obfuscation techniques assume that user identities exist
but add uncertainty and randomness in collected loca-
tions to decrease accuracy. Figure 8 shows the intuition
of the three approaches that we consider.

1. Modify Radius Size. Ardagna et al. propose location
privacy for fitness tracking domains [27] by applying
a modification to the EPZ radius to enlarge the pri-
vacy zone, as shown in the Figure 8a. Here, r is the
original radius of privacy zone and r ' is the enlarged
radius. This technique predicts that the protected lo-
cation will be harder to guess if the last visible point
in the activity is further away from location.

2. Fuzz EPZ Intersection Points: The surveyed EPZ
implementations provide a GPS coordinate in the ac-
tivity route that falls very close to the boundary of the
privacy zone. We reason that perturbing the boundary
of the EPZ will significantly increase the difficulty of
attack. We therefore present a fuzzing method that,
for each posted activity, randomly removes a small
number of GPS coordinates beyond the true bound-
ary of the EPZ. We predict that a small amount of
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noise (e.g., a few meters) injected in this fashion will
dramatically change the location of the attacker’s pre-
diction (e.g., a few blocks).

3. Spatial Cloaking Another technique of location ob-
fuscation is spatial cloaking [41]. We adapt spatial
cloaking the in context of fitness tracking services.
We shift the center of EPZ, concealing the protected
location at an unknown point within the privacy zone.
This obfuscation is shown in Figure 8c, where d is the
size of the shift and 6 is the direction (angle) in which
center moves. Note that while shifting center, the d
needs to be always less than the radius of previous
privacy zone circle otherwise user sensitive location
information will not be obfuscated. We pick d using
random value generated from Laplacian distribution
to achieve €-geo-indistinguishability where € is level
of privacy [26].8

6.2 Data Synthesis

To test the above privacy extensions, we generated obfus-
cated privacy zone records using our Strava dataset us-
ing 18,532,140 unprotected (not-EPZ enabled) activities.
The reason for using unprotected activities is that they
provided known locations to use as ground truths, and
also because some countermeasures may actually reveal
parts of the true route that were concealed by Strava’s
EPZ implementation. We generated a synthetic dataset
using the same technique described in Section 5.1. For
each user, we searched their activities for route endpoints
that fell within 50 meters of one another. We took the
centroid of these points and designated it as a synthetic
protected location. By considering only those activities
associated with one of these protected locations, our sub-
sequent analysis was based off 1,593,364 users and asso-
ciated activities. Finally, we applied a privacy-enhanced
EPZ to each protected location as described below.

6.3 Countermeasure Implementations

Modify Radius.  For each user, we apply each of the 5
EPZ radii permitted by Strava, which enables us to see
the affect of radius size on accuracy.

Fuzz EPZ Intersection Points.  After removing points
from each route that fall within the EPZ, we continue to
remove points up to a random distance r; past the inter-
section (see Figure 8b) where 0 < r; < F. We initially
set F to 80 meters, a value intended to approximate the
size of a city block.

8This technique provides similar operational semantics to Ardagna
et al.’s “shift center”” obfuscation [27].

Accuracy (Percentage)

0.125 0.250 0.375 0.500 0.625
Radii of EPZs (Miles)

Figure 9: Efficacy of Modify Radius defense — while larger
EPZ radii seem to reduce attack accuracy, the larger radii are
actually just enveloping entire activities.

Spatial Cloaking.  For each user, we choose a random
radius 7/ from the set of permissible EPZ radii on Strava,
a random angle 6 ranged from 0 to 355 by factors of 5,
and a random value d where 0 < d < r’. We then shifted
the center of the EPZ by distance d in the direction of
0. This ensured that the EPZ still covered the user’s pro-
tected location, but that location was at a random point
within the EPZ instead of the center. d was generated us-
ing a Planar Laplacian mechanism [26] to achieve €-geo-
indistinguishability. This function takes € which was set
to 1 and r which was set to /. Finally, we truncated all
user activities such that no GPS coordinate fell within the
enhanced EPZ.

6.4 Countermeasure Evaluation

Modify Radius.  Against this obfuscation, we deployed
our original EPZ identification attack as described in in
Section 3. The results are shown in Figure 9; while our
accuracy is at 99% against 0.125 mile EPZs. our effec-
tiveness plummets to 46% against 0.625 mile EPZs. This
finding would seem to suggest that a viable and imme-
diately applicable countermeasure against EPZ identifi-
cation is simply to use one of the large radius options
that are already made available by Strava. Unfortunately,
upon further analysis we discovered that this was not the
case. This drop in accuracy is not a result of the increased
distance between endpoints and the protected location,
but simply that the larger radii will often completely en-
velope a posted activity. In other words, the loss of ac-
curacy can be accounted for by a decrease in observable
routes (and their endpoints). At 0.625 miles, the majority
of the activities in our dataset become invisible, dealing
a major blow to the utility of the fitness tracking service.

Fuzz EPZ Intersection Points. ~ Against this obfusca-
tion, we considered that an attacker may try to account
for the added noise by modifying the distance similar-
ity threshold 7, used in the EPZ identification algorithm.
We considered a simple extension where 7, incorporated
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Figure 10: Efficacy of Fuzz EPZ Intersection Points defense.
Each line charts performance using a different EPZ radii.

the fuzzing value F by some constant factor:

T, =144 cF ©6)

We parameterized ¢ by selecting a random subset of
1,000 athletes and running our algorithm using different
c values but with a fixed F of 80 meters. As shown in
Figure 10a, the optimal value of ¢ turned out to be 1.

Having parameterized the attack, we next set out to
tune our fuzzing parameter in order to identify an accept-
able tradeoff between privacy and usability of the fitness
tracking service. Selecting a different random subset of
1000 users, we applied the enhanced EPZ mechanism.
For each of the 5 permissible Strava radii », we applied
different values of F ranging from 40 to r, with a ceiling
of 500 meters. Several interesting findings emerge from
our results, shown in Figure 10b. The first is that, while
a protected location can be predicted with 96% accuracy
when r = 0.250 miles, that accuracy drops to 32% with
r = 0.250 miles and F = 40 meters. This is significant
because a much larger section of the route is visible in
the latter case in spite of the dramatically improved pri-
vacy level. It is also visible that higher F values quickly
offer diminishing returns on privacy. At F = 200 me-
ters (0.124 miles), accuracy is less than or equal to 15%
against all radii. This validates our theory that injecting a
small amount of noise into EPZ intersection points may

Figure 11: Activity example that demonstrates an attack
against the Spatial Cloaking defense. If routes are moving in
the direction of the protected location when they cross the EPZ,
linear interpolation of the routes will yield an intersection point
close to the location.
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Figure 12: Efficacy of Spatial Cloaking defense (using difter-
ent EPZ radii) against linear interpolation attacks.

lead to dramatic increases in privacy level. However, we
note that there are likely more expressive models for the
attacker to overcome fuzzing noise, which we leave for
future work.

Spatial Cloaking  Against this obfuscation, it no longer
makes sense for an attacker to predict the center of the
enhanced EPZ, as the protected location is equally likely
to fall anywhere within the circle. However, we predict
that the direction of an activity route as it enters the EPZ
still leaks significant information about the user’s pro-
tected location. To demonstrate this, we propose a new
attack that interpolates the direction of routes as they en-
ter the EPZ. Figure 11 demonstrates the intuition of this
approach. For each user activity, we inspect the last 2
GPS points at the end of the route, then extend the route
through the EPZ with simple linear interpolation. After
doing this for every activity, we tabulate all of the points
in the EPZ at which these lines intersect. We then group
these intersections together to find the maximum number
of intersection points that fall within 7; of one another. If
multiple intersection points were found that fell within 7,
of each other, we calculated the centroid of these points
and issued a prediction. We considered our prediction
successful if the highest confidence centroid fell within
50 meters of the actual protected location.
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[ Radii | Random Guess [ Prediction | Improvement

0.125 6.178% 45.0 % 7x
0.250 1.544% 41.3 % 27x
0.375 0.686% 39.1 % 57x
0.500 0.386% 37.6 % 98x
0.625 0.247% 36.2 % 147x

Table 2: Success rate of our attack on spatial cloaking com-
pared to randomly guessing. Although the obfuscation re-
duces our identification rate, our attack significantly outper-
forms chance levels.

Our results can be found in Table 2. Unsettlingly,
this simple interpolation attack is 36.2 % - 45.0 % ac-
curate against geo-indistinguishability techniques. To
demonstrate the significance of this result, consider the
likelihood of predicting the protected location by issu-
ing a random guess that falls within the EPZ, as shown
in Table 2. For small privacy zones, our approach of-
fers a 7x improvement over random guess; against large
privacy zones, our approach offers a 147x improvement
over random guessing. We also obtained similar results
when running our fuzzing obfuscation against the inter-
polation attack. While the identification rate here is still
low, it is not difficult to imagine that a more sophisticated
version of this attack that leverages more expressive in-
terpolation techniques and incorporates map information
to reduce the search space. These results point to a nat-
ural tension between the desire to publish route infor-
mation while concealing sensitive endpoints; significant
amounts of private information is leaked through inspect-
ing the trajectory of the route. At the same time, this
countermeasure significantly increases the complexity of
breaking an EPZ, which may prove sufficient to dissuade
attackers in practice.

7 Discussion & Mitigation

7.1 Strava’s Global Heat Map Incident.

The release of Strava’s Global Heatmap published ag-
gregated public usage data for 27 million users [14]. The
motivation for publishing the heatmap was to help pro-
vide a resource for athletes to explore and discover new
places to exercise; in addition, a related Strava Metro
project leveraged this heatmap data to assist departments
of transportation and city planning groups in improving
infrastructure for bicyclists and pedestrians [19]. How-
ever, as a result of the sparsity of background noise in
some regions, the heatmap was observed to leak sensi-
tive and classified information regarding the locations
of military bases, covert black sites and patrol routes,
to name a few [24]. This information which could be
turned into actionable intelligence, leading to potentially
life-threatening situations [46].

Following the news coverage of privacy leakage in the
global heatmap, we became curious about the privacy

habits of the Strava users that exercised at these facili-
ties. We searched our dataset for activities from three
of the locations identified in popular media: the United
Kingdom’s Government Communications Headquarters
(GCHQ), Australia’s Pine Gap military facility, and Kan-
dahar Airforce Base in Afghanistan. We found that 1 of 7
athletes in our dataset were using EPZs at GCHQ, 1 of 8
athletes used EPZs at Pine Gap, and 1 of 13 athletes used
EPZs at Kandahar, suggesting that a non-negligible mi-
nority of athletes at these sites were aware of the privacy
risks and were attempting to safeguard their usage.

The findings presented in this study potentially exac-
erbate the safety risks posed by the global heatmap rev-
elations. Because many of the discovered facilities are
highly secure, their identification in the heatmap may
not pose an immediate threat to the safety of personnel.
However, while the identities of specific athletes were
not directly leaked in the heatmap, a related vulnerability
allows an attacker to upload spoofed GPS data in order
to discover the IDs of Athletes in a given area [25]. They
can then search Strava for off-site areas that the targeted
athlete frequents, making EPZs the last line of defense
for protecting the target’s home. Unfortunately, we have
demonstrated that EPZs (as originally implemented) are
inadequate, meaning that, conceivably, an attacker could
have used our technique to identify an insecure location
associated with military or intelligence personnel. We
note again that such an attack is presently much more
difficult on Strava following updates to their EPZ mech-
anism, which we describe in Section 9.

7.2 Attack Replication.’

The implications of our EPZ Identification Attack extend
beyond one single fitness tracking app. To demonstrate,
we replicated our attack on Map My Tracks [18] and
Garmin Connect [12].

Map My Tracks. Users can set EPZs of radii 500,
1000, or 1500 meters. Map My Tracks also permits users
to export GPS coordinates of the activities of any user
in a CSV format. Like Strava, it is possible to detect
the presence of an EPZ by inspecting the “distance from
start” value of the GPS coordinates, which does not start
from O if a route began within an EPZ. We created an ac-
count on Map My Tracks and uploaded 4 activities start-
ing from the same “sensitive” location. Regardless of the
EPZ size used, we successfully identified the sensitive
location by running our attack, We did not need to repa-
rameterize our algorithm (i.e., 7y, 7;), indicating that our
values are robust across multiple services.

9Here, we describe an attack replication on companies’ prior EPZ
mechanisms, which were modified following vulnerability disclosure.
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Garmin Connect.  Garmin Connect is fitness tracking
services that allow users to share activities tracked with
compatible Garmin devices. Garmin Connect provides
EPZs with radii ranging from 100 to 1000 meters in
100 meter increments. Like Map My Tracks, Garmin
Connect allows users to export GPS coordinates of
activities of other users in GPX format (a light-weight
XML data format). Here, discrepancies between the
route information and advertised distance once again
makes it possible to infer when an EPZ is enabled on an
activity. Creating an account on Garmin Connect, we
uploaded 3 activities starting from a “sensitive” location.
When launching our attack against 100, 500, and 1000
meter EPZs, we reliably recovered the protected location.

7.3 Additional Mitigations

In addition to the specific privacy enhancements pre-
sented above, we also advise fitness tracking services to
adopt the following general countermeasures to order to
increase the difficulty of abusing their services:

Randomize Resource IDs.  Strava and Map My Tracks
use sequential resource identifiers; data resources identi-
fiers should be randomly assigned from a large space of
possible identifiers (e.g., 264), as already done by Garmin
Connect, to prevent the bulk enumeration of resources.

Authenticate All Resource Requests.  Strava facilitates
surveillance at scale because it does not require authenti-
cation in order to access resources. To address this con-
cern, we recommend placing fine-grained resources be-
hind an authentication wall so that Strava can monitor or
suspend accounts that issue a high volume of requests.

Server-Side Rendering of Map Resources. ~ We do not
believe that it is necessary to expose raw GPS coordi-
nates to the client in order to provide an enriched user
experience. Instead, activity maps could be rendered at
the server, or at least filtered and fuzzed to frustrate EPZ
location attempts.

Conceal Existence of EPZ.  Route information exposed
to clients should be consistent in the claims they make
about the length of routes. The advertised distance of
an activity should be modified to reflect the portion of
the route that is hidden by the EPZ. Had there been con-
sistency of distance claims in our study, we would have
been unable to obtain a ground truth as to whether or not
an EPZ was enabled on the activity. While our method-
ology could still be used to detect likely EPZs in the ab-
sence of ground truth, there would also be a large num-
ber of false positives resulting from attempting to look
for EPZs where they did not exist.

8 Related Work

Prior to this study, the privacy considerations of fitness
apps has received little consideration in the literature.
Williams [11] conducted a detailed study of Strava users
and their behavior towards Strava application. He con-
cluded that the majority of participants had considered
privacy issues when using the application and had taken
some measures to protect themselves, such as setting up
privacy zones or not listing their equipment. However, in
this work we show that only 9% of all the activities we
studied were using privacy zones, calling this result into
question. Further, we demonstrated that the privacy mea-
sures provided by Strava are insufficient to protect user
privacy. The demographics of Strava users [4] indicate
that an attacker would have an ample supply of potential
targets to choose from; as seen in [6, 17], property theft
against Strava users has already been reported in the me-
dia. Our findings provide a viable explanation for how
these attacks could occur.

8.1 Location Privacy

Geo-indistinguishability has been used previously [30,
55] to provide static location privacy by perturbing the
real location with fake location. Geo-indistinguishability
is derived from differential privacy [35] and ensures that
for any two location that are geographically close it
will produce a pseduo-location with similar probabilities.
Andrés et al. [26] used Planar Laplace mechanism to
achieve € geo-indistinguishability by using noise drawn
from a polar Laplacian distribution and added to real lo-
cations. However, these techniques are not directly ap-
plicable to mobility data such as athletes routes that we
consider in this paper. Existing work on mobility-aware
location obfuscation technique [29] replaces real loca-
tion traces with plausible fake location traces using hu-
man mobility model. However, this technique cannot be
used directly in the context of fitness tracking apps as
users still want to share a major portion of a route while
preserving a certain portion of route (e.g. home).

In some instances, prior work has demonstrated appli-
cable techniques for Preserving endpoint privacy while
sharing route data. Duckham and Kulik [34] present
location obfuscation techniques for protecting user pri-
vacy by adding dummy points in measurements with the
same probability as the real user position. Ardagna et
al. [27] demonstrate how an EPZ can be used to obfus-
cate users locations in order to preserve privacy, although
possible weaknesses in this method are raised in [52].
In this work, we have demonstrated proof-of-concept at-
tacks that can violate user privacy even in the presence
of these obfuscations.
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8.2 Social Network Privacy

The social network aspect of fitness tracking services al-
lows users to “follow” each other, giving them access to
additional data about each other. This can lead to so-
cial engineering [39, 5] and even automated social bot-
net attacks as in [28, 31], where user information such
as location is automatically extracted. Strava provides a
privacy option to require user approval for new followers,
we show that when this option is not enabled such attacks
are also possible on Strava and other fitness apps. A va-
riety of privacy vulnerabilities have been identified on
other social network platforms, ranging from server-side
surveillance [33], third party application spying [54], and
profiling of personality types [51]. This study confirms
that a number of these concerns are also present in fitness
tracking social networks.

8.3 Mobile Privacy

The functionality of fitness tracking social networks
is predicated on the ubiquity of modern smart phones
equipped with GPS and other private information (e.g.,
sensor readings). Lessons learned in the security litera-
ture regarding mobile application permissions could also
be applied in the fitness space to improve user privacy.
Enck et al. demonstrate a method of detecting applica-
tion leakage of sensor information on the Android plat-
form through taint analysis [36], and subsequently con-
ducted a semi-automated analysis of a corpus of 1,100
applications in search of security and privacy concerns
[37]. Felt et al. conduct a survey of application privileges
and discovered that one-third of Android apps requested
privileges that they did not need [38]. Our work suggests
that overprivilege may also be a concern for third party
applications that interoperate with fitness apps.

9 Ethics and Disclosure

Given the potential real-world privacy implications of
this study, we have taken a variety of steps to ensure
our research was conducted responsibly. We have con-
sulted our Institutional Review Board (IRB) to confirm
that our analysis of social media posts does not meet
the definition of human subjects research (as defined in
45CFR46(d)(f) or at 21CFR56.102(c)(e)) and thus does
not require IRB approval. The rationale provided was
that analysis of public datasets such as social media posts
does not constitute human subjects research. We note
that our use of social media posts is consistent with prior
research on user privacy [42, 56, 45, 53, 48], particularly
studies that have evaluated location privacy and user dis-
covery [47, 43, 49].

We have disclosed our findings to Strava, Garmin Con-
nect, and Map My Tracks. As of the date of publication,
all three companies have acknowledged the vulnerability
and have incorporated one or more of our recommended
countermeasures into their production systems. Strava
has adopted a spatial cloaking function that is invoked
upon the creation of every new user-specified EPZ, and
provides the user with an option of re-randomizing the
EPZ if they do not like its placement. Additionally,
Strava has taken steps to prevent the bulk collection of
their public user activities, including aggressive rate lim-
iting of the strava.com/stream/ API, least privilege
restrictions on returned API fields based on the client’s
authorization state, and IP whitelisting of interoperable
social network’s servers to prevent unauthorized use of
other APIs. Garmin Connect has introduced a random-
ization step similar to our EPZ intersection fuzzing tech-
nique — each time a new activity crosses an EPZ, the
point at which the route is truncated is perturbed accord-
ing to a random distribution. Additionally, Garmin Con-
nect has added an optional user-driven obfuscation when
a user attempts to create an EPZ, they may now drag the
EPZ center away from their house, and moreover a mes-
sage has been added to encourage users to set up mul-
tiple overlapping privacy zones. Map My Tracks also
reported that they incorporated spatial cloaking into their
new EPZ feature, but declined to discuss the details of
their solution.

10 Conclusion

As fitness tracking services have grown in popularity,
the online sharing of fitness data has created concerns
for personal privacy and even national security. Un-
derstanding the effectiveness of privacy protections in
such a system is paramount. In this paper, we have
conducted a deep analysis of the privacy properties of
Strava, an exemplar fitness tracking app. While we iden-
tified significant demand for privacy protections by users
of these services, we have also demonstrated current
mechanisms are inadequate — we found that the homes
privacy-conscious athletes are consistently identifiable
by attackers, and in fact that the only truly safe athletes
are those that use the service infrequently. Through the
insights gained in this study, we were able to develop
and empirically demonstrate the efficacy of several novel
privacy mechanisms that have been put into practice by
major fitness tracking services. It is our hope that this
work spurs greater interest in the efficacy and usability
of privacy features in fitness tracking apps.
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