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Equifax Data Breach Timeline 2017
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Breached Detected

Hackers in 
Equifax Servers

Patched

Breached 
Announced

3 Months of crucial attack audit 
logs Are current auditing systems scalable? 



Data Provenance aka Audit log  
� Lineage of system activities 
� Represented as Directed Acyclic Graph (DAG) 
� Used for forensic analysis  
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1.   Bash,	Spawns	NGINX	
2.  NGINX,	Receives	from	abc.com	
3.  NGINX,	Reads	File	index.html	
4.  ….......	

index.html	

NGINX	

abc.com	

Audit	log	

Bash	

Provenance	Graph	

Bash:	
exec(“./NGINX”);
	
NGINX:	
recv(…,“abc.com”);
fread(“index.html”);

Code	Execu@on	



Data Provenance in a Cluster 
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Worker	Nodes	

Master	Node	

Centralized auditing not 
practical due to two 

limitations 



Limitation#1: Graph Complexity 
� NGINX and MySQL running for 5 mins on a single machine 
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Finding needle in a haystack 
problem 



Limitation#2: Storage overhead  
� Leads to network overhead as logs are transferred to master 

node 
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Winnower 

� Cluster applications are replicated in accordance with 
microservice architecture principle  

� Replicated apps produce highly homogeneous 
provenance graphs 
�  core execution behaviour is similar 
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Key Idea: 
Remove redundancy from provenance graphs 
across cluster before sending to master node 
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Before 

/up/*	

NGINX	

*	

Bash	

mysql	

*	

mysqld	

/db/*	

Master Node View with Winnower 

After 

Other	
library	file	
ver@ces	



Winnower 
� Build consensus model across cluster using graph grammars 
�  Like string grammar, graph grammars provide rule-based 

mechanisms 
�  For generating, manipulating and analyzing graphs 
�  Induction – produce grammar from a given graph 
�  Parsing – membership test of a given graph is in a grammar 
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Graph	 Graph	Grammar	



Architecture 
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Architecture 
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Audit	Module	

Model	
Aggregator	

Winnower		
Agent	

Query	part	of	
Provenance	graph	High-fidelity	

Provenance	graph	

Worker Nodes

Master Node

Worker Node



Provenance Graph Abstraction 
� Graph Induction process builds a model/grammar that concisely 

describe the whole graph 
� However, instance-specific fields frustrate any attempts to build a 

generic application behaviour model  
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No	General	model	
as	instance	specific	
informa@on	such	
PID	is	different	
among	graphs			

ftp
pid:2788

ftp worker
pid:2797

192.168.0.2

ftp listener
pid:2789

192.168.0.1

ftp listener
pid:2791

ftp worker
pid:2795

192.168.0.2192.168.0.1 /up/File1
Inode:3

/up/File2
Inode:5

ftp
pid:2780

Node 1 Node 2

Graph	
Induc@on	



Provenance Graph Abstraction 
� Provenance graph vertices have well defined fields 

�  E.g. pid:1234 , FilePath:/etc/ld.so
� Defined rules manually that remove or generalize these fields 

ftp
pid:2788

ftp worker
pid:2797

192.168.0.2

ftp listener
pid:2789

192.168.0.1

ftp listener
pid:2791

ftp worker
pid:2795

192.168.0.2192.168.0.1 /up/File1
Inode:3

/up/File2
Inode:5

ftp
pid:2780

Node 1 Node 2
ftp

ftp worker

192.168.0.0/24

ftp listener

192.168.0.0/24

ftp listener

ftp worker

192.168.0.0/24192.168.0.0/24
/up/* /up/*

ftp

Node 2Node 1

Graph		
Abstrac@on	



Provenance Graph Induction 
� Deterministic Finite Automata (DFA) Learning to generate grammar 

�  Encodes the causality in generated models 
�  In DFA learning the present state of a vertex includes the path taken 

to reach the vertex (provenance ancestry) 
�  Winnower extends it to remember descendants (provenance progeny) 

� State of each vertex consist of three items: 
1.  Label 
2.  Provenance ancestry 
3.  Provenance progeny 
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File1.txt	

gzip	

Bash	

File1.txt	

Progeny	of	gzip	vertex	

Ancestry		
of	gzip	vertex	



Provenance Graph Induction 
� Finds repetitive patterns using standard implicit and explicit 

state merging algorithm  
�  Implicit state merging combines two subgraphs if states of each 

vertex are same in both subgraphs 
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ftp

ftp worker

192.168.0.0/24

ftp listener

192.168.0.0/24

ftp listener

ftp worker

192.168.0.0/24192.168.0.0/24
/up/* /up/*

ftp

Node 2Node 1 ftp192.168.0.0/24

ftp listener

ftp worker

192.168.0.0/24 /up/*

Confidence level
Legend 2

Graph	
Induc@on	



java

java
mapper 

data

java
reducer 

java

java  
mapper 

data 

java
reducer

Node 1

Explicit State Merging 
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Merge	two	nodes	

� At high-level explicit state merging  
�  Picks two nodes and make their states same 
�  Check if subgraph can be merged implicitly  

� Consider a chained map reduce job 

java

java  
mapper 

data 

java
reducer

java

java  
mapper 

data 

java
reducer

Node 1

								:=		S	
S						:=	A	
S						:=	T	|	V	
T						:=	A	->	X	|	A	->	Y	
X						:=	B	->	W		
Y						:=	C	->	W	
W				:=	D	|	D	->	S	
	
A							:=	data	
B							:=	java	mapper	
C							:=	java	reducer	
D							:=	java	

Graph	Grammar	

A

B

D

C



Provenance Graph Induction 
� Consider a graph with a malicious activity 
� Malicious behavior is visible in the final model 
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Graph	
Induc@on	
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Evaluation Setup 

� Setup 
�  1 VM as master node, 4 VMs as worker nodes 
�  SPADE and Docker Swarm 
�  Epoch size 50 sec 

� Metrics 
�  Storage Overhead 
�  Computational Cost 
�  Effectiveness  
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Storage Overhead on Master Node 
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Storage Reduction on Master Node 
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�  Apache Webserver with 
moderate workload 

�  Note the log scale on y-
axis 
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7z	compression	is	not	suitable:	
•  No	global	view	of	cluster	
•  Oblivious	to	previous	batch	



Evaluation: Computation Cost 

25	

�  Average time spent in induction and membership test at each epoch 
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Case Study: Ransomware Attack 
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•  Attacker exploits Redis database 
server vulnerability version < 3.2 

•  Vulnerability allows attacker to change 
SSH key and log in as Root 

•  Attacker deletes the database and left 
a note using vim to send bitcoins get 
database back 

 



Traditional Graph of Attack 

27	

� 10 instances of redis running in the cluster 
� ~80k vertices and ~83K edges with 161 MB size 
� Part of provenance graph shown below 
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Winnower Generated Provenance graph 

� 54 vertices and 68 edges with 0.7 MB size 
� Part of graph is shown below: 
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bash
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/dev/tty

Other library files
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Winnower Generated Provenance graph 

� What happens if we attack all the nodes in the cluster 
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� Winnower is the first practical system for provenance-based 
auditing of clusters at scale with low overhead 

� Winnower significantly improves attack identification and 
investigation in a large cluster 
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Conclusion 



Thank you for your time. 
whassan3@illinois.edu 
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Questions 
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Backup Slides




Threat model 

� Assumptions 
�  Winnower only tracks user-space attacks i.e. trusts the OS 
�  Log integrity is maintained  

� Attack surface 
�  Distributed application replicated on Worker nodes 

� Attacker’ motive 
�  Gain control over worker node by exploiting a software vulnerability in 

the distributed application 
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