
Towards Scalable Cluster Auditing
through Grammatical Inference

over Provenance Graphs
Wajih	Ul	Hassan,	Mark	Lemay,	Nuraini	Aguse,		

Adam	Bates,	Thomas	Moyer	

NDSS Symposium 2018
Feb 20, 2018

Notable Data Breach in 2017

2	

Notable Data Breach in 2017

3	

Equifax Data Breach Timeline 2017

apr may jun jul aug sep oct

Breached Detected

Hackers in
Equifax Servers

Patched

Breached
Announced

Notable Data Breach in 2017

4	

Equifax Data Breach Timeline 2017

apr may jun jul aug sep oct

Breached Detected

Hackers in
Equifax Servers

Patched

Breached
Announced

3 Months of crucial attack audit
logs

Notable Data Breach in 2017

5	

Equifax Data Breach Timeline 2017

apr may jun jul aug sep oct

Breached Detected

Hackers in
Equifax Servers

Patched

Breached
Announced

3 Months of crucial attack audit
logs Are current auditing systems scalable?

Data Provenance aka Audit log
� Lineage of system activities
� Represented as Directed Acyclic Graph (DAG)
� Used for forensic analysis

6	

1.   Bash,	Spawns	NGINX	
2.  NGINX,	Receives	from	abc.com	
3.  NGINX,	Reads	File	index.html	
4.  ….......	

index.html	

NGINX	

abc.com	

Audit	log	

Bash	

Provenance	Graph	

Bash:	
exec(“./NGINX”);
	
NGINX:	
recv(…,“abc.com”);
fread(“index.html”);

Code	Execu@on	

Data Provenance in a Cluster

7	

Worker	Nodes	

Master	Node	

Centralized auditing not
practical due to two

limitations

Limitation#1: Graph Complexity
� NGINX and MySQL running for 5 mins on a single machine

8	

Finding needle in a haystack
problem

Limitation#2: Storage overhead
� Leads to network overhead as logs are transferred to master

node

9	

[VALUE]	GB	

[VALUE]	GB	

[VALUE]	GB	

[VALUE]	GB	

0	

2	

4	

6	

8	

10	

12	

14	

Day1	 Day2	 Day3	 Day4	 Day5	

Lo
g	
Si
ze
	(G

B)
	

	Audit	Log	Size	Growth	for	a	Single	NGINX	server	

Uncompressed	 Compressed	

2.54	GB/Day	
on	a	single	
machine	

With	
compression	
>1GB/Day	

Winnower

� Cluster applications are replicated in accordance with
microservice architecture principle

� Replicated apps produce highly homogeneous
provenance graphs
�  core execution behaviour is similar

10	

Key Idea:
Remove redundancy from provenance graphs
across cluster before sending to master node

11	

Before

/up/*	

NGINX	

*	

Bash	

mysql	

*	

mysqld	

/db/*	

Master Node View with Winnower

After

Other	
library	file	
ver@ces	

Winnower
� Build consensus model across cluster using graph grammars
�  Like string grammar, graph grammars provide rule-based

mechanisms
�  For generating, manipulating and analyzing graphs
�  Induction – produce grammar from a given graph
�  Parsing – membership test of a given graph is in a grammar

12	

a	 a	

t	 t	 t	

b	 b	 b	

a	

S	 ≔	 A	 T	

A	 ≔	 a	 B	

T	 t	

B	
≔	

b	

S	

S	 ≔	 e	

a	 e	

t	

b	

Graph	 Graph	Grammar	

Architecture

13	

Audit	Module	

Prov.		Graph	

Worker Nodes

Model	
Aggregator	

Master Node

Worker Node

Fetch	graph	at		
each	epoch	

—
—

—
—

—
—

—
— —

—

—
—

—
—

—
——

—

Fine-grained
 Graph

Abstracted
 Graph

Graph

Abstraction

Model
Graph

Graph

Induction

Winnower		
Agent	

Model	graphs/grammars		
from	cluster	

Architecture

14	

Audit	Module	

Model	
Aggregator	

—
—

—
—

—
—

—
— —

—

—
—

—
—

—
——

—

Fine-grained
 Graph

Abstracted
 Graph

Graph

Abstraction

Model
Graph

Graph

Induction

Winnower		
Agent	

Aggregated		
Model	Only	send	
Model	updates	

Worker Nodes

Master Node

Worker Node

Prov.		Graph	

Fetch	graph	at		
next	epoch	

Architecture

15	

Audit	Module	

Model	
Aggregator	

Winnower		
Agent	

Query	part	of	
Provenance	graph	High-fidelity	

Provenance	graph	

Worker Nodes

Master Node

Worker Node

Provenance Graph Abstraction
� Graph Induction process builds a model/grammar that concisely

describe the whole graph
� However, instance-specific fields frustrate any attempts to build a

generic application behaviour model

16	

No	General	model	
as	instance	specific	
informa@on	such	
PID	is	different	
among	graphs			

ftp
pid:2788

ftp worker
pid:2797

192.168.0.2

ftp listener
pid:2789

192.168.0.1

ftp listener
pid:2791

ftp worker
pid:2795

192.168.0.2192.168.0.1 /up/File1
Inode:3

/up/File2
Inode:5

ftp
pid:2780

Node 1 Node 2

Graph	
Induc@on	

Provenance Graph Abstraction
� Provenance graph vertices have well defined fields

�  E.g. pid:1234 , FilePath:/etc/ld.so
� Defined rules manually that remove or generalize these fields

ftp
pid:2788

ftp worker
pid:2797

192.168.0.2

ftp listener
pid:2789

192.168.0.1

ftp listener
pid:2791

ftp worker
pid:2795

192.168.0.2192.168.0.1 /up/File1
Inode:3

/up/File2
Inode:5

ftp
pid:2780

Node 1 Node 2
ftp

ftp worker

192.168.0.0/24

ftp listener

192.168.0.0/24

ftp listener

ftp worker

192.168.0.0/24192.168.0.0/24
/up/* /up/*

ftp

Node 2Node 1

Graph		
Abstrac@on	

Provenance Graph Induction
� Deterministic Finite Automata (DFA) Learning to generate grammar

�  Encodes the causality in generated models
�  In DFA learning the present state of a vertex includes the path taken

to reach the vertex (provenance ancestry)
�  Winnower extends it to remember descendants (provenance progeny)

� State of each vertex consist of three items:
1.  Label
2.  Provenance ancestry
3.  Provenance progeny

18	

File1.txt	

gzip	

Bash	

File1.txt	

Progeny	of	gzip	vertex	

Ancestry		
of	gzip	vertex	

Provenance Graph Induction
� Finds repetitive patterns using standard implicit and explicit

state merging algorithm
�  Implicit state merging combines two subgraphs if states of each

vertex are same in both subgraphs

19	

ftp

ftp worker

192.168.0.0/24

ftp listener

192.168.0.0/24

ftp listener

ftp worker

192.168.0.0/24192.168.0.0/24
/up/* /up/*

ftp

Node 2Node 1 ftp192.168.0.0/24

ftp listener

ftp worker

192.168.0.0/24 /up/*

Confidence level
Legend 2

Graph	
Induc@on	

java

java
mapper

data

java
reducer

java

java
mapper

data

java
reducer

Node 1

Explicit State Merging

20	
Merge	two	nodes	

� At high-level explicit state merging
�  Picks two nodes and make their states same
�  Check if subgraph can be merged implicitly

� Consider a chained map reduce job

java

java
mapper

data

java
reducer

java

java
mapper

data

java
reducer

Node 1

								:=		S	
S						:=	A	
S						:=	T	|	V	
T						:=	A	->	X	|	A	->	Y	
X						:=	B	->	W		
Y						:=	C	->	W	
W				:=	D	|	D	->	S	
	
A							:=	data	
B							:=	java	mapper	
C							:=	java	reducer	
D							:=	java	

Graph	Grammar	

A

B

D

C

Provenance Graph Induction
� Consider a graph with a malicious activity
� Malicious behavior is visible in the final model

21	

Graph	
Induc@on	

ftp

ftp
worker

ftp
listener

ftp
listener

ftp
worker/up/*

/up/*

bash

Malicious
filewget

x.x.x.x

ftp

Node 1

ftp ftp
listener

ftp
worker/up/*

Node 3

Node 2
ftp

ftp listener

ftp worker

/up/*

bash

Malicious
file

wget

x.x.x.x

Confidence level
Legend 1 3

Master Node

Evaluation Setup

� Setup
�  1 VM as master node, 4 VMs as worker nodes
�  SPADE and Docker Swarm
�  Epoch size 50 sec

� Metrics
�  Storage Overhead
�  Computational Cost
�  Effectiveness

22	

Storage Overhead on Master Node

23	

0	 100	 200	 300	 400	 500	 600	 700	

HTTPD	

ProFTPD	

MySQL	

485	

630	

130	

0.11	

0.12	

0.17	

LOG	SIZE	IN	MB	

Winnower	 Raw	

98.7%	decrease	

Storage Reduction on Master Node

24	

�  Apache Webserver with
moderate workload

�  Note the log scale on y-
axis

1

10

100

1000

10000

100000

50 100 150 200 250 300 350 400 450 500 550 600

LO
G

 S
IZ

E
 (M

B
)

TIME (SEC)

Raw(Uncompressed) Raw(Compressed) Winnower

7z	compression	is	not	suitable:	
•  No	global	view	of	cluster	
•  Oblivious	to	previous	batch	

Evaluation: Computation Cost

25	

�  Average time spent in induction and membership test at each epoch

0	

5	

10	

15	

20	

25	

30	

35	

50	 100	 150	 200	 250	 300	 350	 400	 450	 500	 550	 600	

Av
er
ag
e	
Ti
m
e	
(s
ec
)	

Elapsed	Time	(sec)	

Apache	 MySQL	 ProFTPD	

Heterogeneous	
Workload	->	

Updates	model	

Generate	Model	
for	first	@me	

Membership	check	
in	exis@ng	model	

Case Study: Ransomware Attack

26	

•  Attacker exploits Redis database
server vulnerability version < 3.2

•  Vulnerability allows attacker to change
SSH key and log in as Root

•  Attacker deletes the database and left
a note using vim to send bitcoins get
database back

Traditional Graph of Attack

27	

� 10 instances of redis running in the cluster
� ~80k vertices and ~83K edges with 161 MB size
� Part of provenance graph shown below

28	

Winnower Generated Provenance graph

� 54 vertices and 68 edges with 0.7 MB size
� Part of graph is shown below:

Worker

* /uploads/*

redis-server

x.x.x.x

Attack
Provenance

Nginx

*

bash

/root/.ssh/authorized_keys

*

172.17.0.0/24

/var/lib/redis/dump.rdb

/proc/12743/stat

/var/log/redis/redis.log

x.x.x.x sshd bash

/root/ransomware.notevim

/dev/tty

Other library files

Confidence level
Legend 1 10

29	

Winnower Generated Provenance graph

� What happens if we attack all the nodes in the cluster

Worker

* /uploads/*

redis-server

x.x.x.x

Attack
Provenance

Nginx

*

bash

/root/.ssh/authorized_keys

*

172.17.0.0/24

/var/lib/redis/dump.rdb

/proc/12743/stat

/var/log/redis/redis.log

x.x.x.x sshd bash

/root/ransomware.notevim

/dev/tty

Other library files

Confidence level
Legend 10

� Winnower is the first practical system for provenance-based
auditing of clusters at scale with low overhead

� Winnower significantly improves attack identification and
investigation in a large cluster

30	

Conclusion

Thank you for your time.
whassan3@illinois.edu

31	

Questions

32	

Backup Slides

Threat model

� Assumptions
�  Winnower only tracks user-space attacks i.e. trusts the OS
�  Log integrity is maintained

� Attack surface
�  Distributed application replicated on Worker nodes

� Attacker’ motive
�  Gain control over worker node by exploiting a software vulnerability in

the distributed application

33	

