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Mobile money, also known as branchless banking, leverages ubiquitous cellular networks to bring much-

needed financial services to the unbanked in the developing world. These services are often deployed as

smartphone apps, and although marketed as secure, these applications are often not regulated as strictly as

traditional banks, leaving doubt about the truth of such claims. In this article, we evaluate these claims and

perform the first in-depth measurement analysis of branchless banking applications. We first perform an au-

tomated analysis of all 46 known Android mobile money apps across the 246 known mobile money providers

from 2015. We then perform a comprehensive manual teardown of the registration, login, and transaction pro-

cedures of a diverse 15% of these apps. We uncover pervasive vulnerabilities spanning botched certification

validation, do-it-yourself cryptography, and other forms of information leakage that allow an attacker to im-

personate legitimate users, modify transactions, and steal financial records. These findings show that the ma-

jority of these apps fail to provide the protections needed by financial services. In an expanded re-evaluation

one year later, we find that these systems have only marginally improved their security. Additionally, we

document our experiences working in this sector for future researchers and provide recommendations to

improve the security of this critical ecosystem. Finally, through inspection of providers’ terms of service, we

also discover that liability for these problems unfairly rests on the shoulders of the customer, threatening to

erode trust in branchless banking and hinder efforts for global financial inclusion.
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1 INTRODUCTION

The majority of modern commerce relies on cashless payment systems. Developed economies
depend on the near instantaneous movement of money, often across great distances, in order to
fuel the engines of industry. These rapid, regular, and massive exchanges have created significant
opportunities for employment and progress, propelling forward growth and prosperity in partic-
ipating countries. Unfortunately, not all economies have access to the benefits of such systems,
and throughout much of the developing world, physical currency remains the de facto means of
exchange.

Mobile money, also known as branchless banking, applications attempt to fill this void. Gener-
ally deployed by companies outside of the traditional financial services sector (e.g., telecommuni-
cations providers), branchless banking systems rely on the near ubiquitous deployment of cellular
networks and mobile devices around the world. Customers can not only deposit their physical cur-
rency through a range of independent vendors, but can also perform direct peer-to-peer payments
and convert credits from such transactions back into cash. Over the past decade, these systems
have helped raise the standard of living and have revolutionized the way money is used in de-
veloping economies. Over 30% of the Gross Domestic Product (GDP) in many nations can now
be attributed to branchless banking applications (Mims 2013), many of which now perform more
transactions per month than traditional payment processors, including PayPal (Highfield 2012).

One of the biggest perceived advantages of these applications is security. Whereas carrying large
amounts of currency long distances can be dangerous to physical security, branchless banking
applications can allow for commercial transactions to occur without the risk of theft. Accordingly,
these systems are marketed as a secure new means of enabling commerce. Unfortunately, the
strength of such claims from a technical perspective has not been publicly investigated or verified.
Such an analysis is therefore critical to the continued growth of branchless banking systems.

In this article, we perform the first longitudinal and comprehensive security analysis of branch-
less banking applications, providing insight into a year of mobile money app development.
Through these efforts, we make the following contributions:

—Analysis of Branchless Banking Applications: We perform the first comprehensive se-
curity analysis of branchless banking applications. First, we use a well-known automated
analysis tool on all 46 known Android mobile money apps across all 246 known mobile
money systems in 2015. We then methodically select seven Android-based branchless bank-
ing applications from Brazil, India, Indonesia, Thailand, and the Philippines with a combined
user base of millions. We then develop and execute a comprehensive, reproducible method-
ology for analyzing the entire application communication flow. In so doing, we create the
first snapshot of the global state of security for such applications. While some of the in-
dividual vulnerabilities we study have been examined in previous work (Fahl et al. 2012;
Egele et al. 2013), this work takes a holistic measurement of a critical industry.

—Identification of Systemic Vulnerabilities: Our analysis discovers pervasive weaknesses
and shows that six of the seven applications broadly fail to preserve the integrity of their
transactions. We then compare our results to those provided through automated analysis
and show that current tools do not reliably indicate severe, systemic security faults. Accord-
ingly, neither users nor providers can reason about the veracity of requests by the majority
of these systems.

In an expanded follow-up study conducted one year after the initial analysis, we re-
evaluate the apps analyzed and find that a significant number of vulnerabilities still remain
in the applications.
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—Analysis of Liability, Public Response, and Recommendations: We combine our tech-
nical findings with the assignment of liability described within every application’s terms of
service, and determine that users of these applications have no recourse for fraudulent ac-
tivity. Therefore, it is our belief that these applications create significant financial dangers
for their users. Additionally, we provide insights for future researchers by discussing the
vendor and public response that resulted from our initial analysis. We conclude with rec-
ommendations for vendors and platforms to help improve the security of mobile money.

The remainder of this article is organized as follows: Section 2 provides background informa-
tion on branchless banking and describes how these applications compare to other mobile payment
systems; Section 3 details our methodology and analysis architecture; Section 4 presents our find-
ings and categorizes them in terms of the Common Weakness Enumeration (CWE) classification
system; Section 5 delivers discussion of broader implications of our findings; Section 6 offers an
analysis of the Terms of Service and the assignment of liability; Section 7 provides an account of
the vendor and public response from our initial study; Section 8 discusses our follow-up analysis
of application security one year after the results from Section 4; Section 9 presents lessons learned
and recommendations for mobile money operators; Section 10 discusses relevant related work;
and Section 11 provides concluding remarks.

2 MOBILE MONEY IN THE DEVELOPING WORLD

The lack of access to basic financial services is a contributing factor to poverty throughout the
world (Bill & Melinda Gates Foundation 2016). Millions live without access to basic banking ser-
vices, such as value storage and electronic payments, simply because they live hours or days away
from the nearest bank branch. Lacking this access makes it more difficult for the poor to save for
future goals or prepare for future setbacks, conduct commerce remotely, or protect money against
loss or theft. Accordingly, providing banking through mobile phone networks offers the promise
of dramatically improving the lives of the world’s poor.

The M-Pesa system in Kenya (Chuhan-Pole and Angwafo 2011) pioneered the mobile money

service model, in which agents (typically local shopkeepers) act as intermediaries for deposits,
withdrawals, and sometimes registration. Both agents and users interact with the mobile money
system using Short Message Service (SMS) or a special application menu enabled by code on a
Subscriber Identity Module (SIM) card, enabling users to send money, make bill payments, top up
airtime, and check account balances. The key feature of M-Pesa and other systems is that their
use does not require having a previously established relationship with a bank. In effect, mobile
money systems are bootstrapping an alternative banking infrastructure in areas where traditional
banking is impractical, uneconomical due to minimum balances, or simply non-existent. M-Pesa
has not yet released a mobile app, but it is arguably the most impactful mobile money system and
highlights the promise of branchless banking for developing economies.

Mobile money has become ubiquitous and essential. M-Pesa boasts more than 18.2 million reg-
istrations in a country of 43.2 million (Kamana 2014). In Kenya and at least eight other countries,
there are more mobile money accounts than bank accounts. As of August 2014, there were a total of
246 mobile money services in 88 countries serving a total of over 203 million registered accounts,
continuing a trend (Penicaud and Katakam 2014) up from 219 services in December 2013. Note that
these numbers explicitly exclude services that are simply a mobile interface for existing banking
systems.

Financial security, and trust in branchless banking systems, depends on the assurances that these
systems are secure against fraud and attack. Several of the apps that we study offer strong assur-
ances of security in their promotional materials. Figure 1 provides examples of these promises.
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Fig. 1. Mobile money apps are heavily marketed as being safe to use. These screenshots from providers’ mar-

keting materials show the extent of these claims. Note that the question mark in Oxigen Wallet’s screenshot

was present on the original website.

This promise of financial security is even reflected in the M-Pesa advertising slogan “Relax, you
have got M-Pesa” [Safaricom 2014]. However, the veracity of these claims is unknown.

2.1 Comparison to Other Services

Mobile money is closely related to other technologies.
Most mobile finance systems share the ability to make payments to other individuals or mer-

chants. In our study, the mobile apps for these finance systems are distinguished as follows:

—Mobile Payment describes systems that allow a mobile device to make a payment to an
individual or merchant using traditional banking infrastructure. Example systems include
PayPal, Google Wallet, Apple Pay, and Square Cash. These systems act as an intermediary
for an existing credit card or bank account.

—Mobile Wallets store multiple payment credentials for either mobile money or mobile
payment systems and/or facilitate promotional offers, discounts, or loyalty programs. Many
mobile money systems (e.g., Oxigen Wallet) and mobile payment systems (e.g., Google Wal-
let and Apple Pay) are also mobile wallets.

—Branchless Banking is designed around policies that facilitate easy inclusion. Enrollment
often simply requires just a phone number or national ID number be entered into the mobile
money system. These systems have no minimum balances and low transaction fees, and
feature reduced “Know Your Customer”1 regulations (Reserve Bank of India 2013). Another
key feature of branchless banking systems is that in many cases, they do not rely on Internet
(IP) connectivity exclusively, but also use SMS, Unstructured Supplementary Service Data
(USSD), or cellular voice (via Interactive Voice Response, or IVR) to conduct transactions.
While methods for protecting data confidentiality and integrity over IP are well-established,
the channel cryptography used for USSD and SMS has been known to be vulnerable for quite
some time (Traynor et al. 2008).

3 APP SELECTION AND ANALYSIS

In this section, we discuss how apps were chosen for analysis and how our initial analysis was
conducted in 2015. As part of our longitudinal study, we re-evaluated these apps in 2016. Section 8
discusses app selection and analysis conducted during the re-evaluation in 2016.

1“Know Your Customer” (KYC), “Anti-Money Laundering” (AML), and “Combating Financing of Terrorism” policies are

regulations used throughout the world to frustrate financial crime activity.
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Fig. 2. The mobile money applications we analyzed were developed for a diverse range of countries. In 2015,

we performed an initial analysis on applications from 28 countries representing up to approximately 1.2 mil-

lion users based on market download counts. From this, we selected seven applications to fully analyze from

five countries. In 2016, we reanalyzed the selected apps to determine if the originally discovered vulnerabil-

ities still remained. Each black star represents these countries, and the white stars represent the remainder

of the mobile money systems.

3.1 Mallodroid Analysis

Using data from the GSMA Mobile Money Tracker (GSMA 2014), we identified a total of 48 An-
droid mobile money apps across 28 countries. We first ran an automated analysis on all 48 of these
apps using Mallodroid (Fahl et al. 2012), a static analysis tool for detecting Transport Layer Se-
curity (TLS) vulnerabilities, in order to establish a baseline. Table 5 in the appendix provides a
comprehensive list of the known Android mobile money applications and their static analysis re-
sults. Mallodroid detects vulnerabilities in 24 apps, but its analysis only provides a basic indicator
of problematic code; it does not, as we show, exclude dead code or detect major flaws in design.
For example, it cannot guarantee that sensitive flows actually use TLS. It similarly cannot detect
ecosystem vulnerabilities, including the use of deprecated, vulnerable, or incorrect TLS configura-
tions on remote servers. Finally, the absence of TLS does not necessarily condemn an application,
as applications can still operate securely using other protocols. Accordingly, such automated anal-
ysis provides an incomplete picture at best, and at worst, an incorrect one. This is a limitation of
all automatic approaches, not just Mallodroid.

In the original Mallodroid paper, its authors performed a manual analysis on 100 of the 1,074
(9.3%) apps that their tool detected to verify its findings; however, only 41% of those apps were vul-
nerable to SSL/TLS man-in-the middle attacks. Thus, it is imperative to further verify the findings
of this tool to remove false positives and false negatives.

3.2 App Selection

Given the above observations, we selected seven mobile money apps for more extensive analysis.
These seven apps represent 15% of the total number of applications and were selected to reflect
diversity across markets, providers, features, download counts, and static analysis results. Collec-
tively, these apps serve millions of users. Figure 2 shows the geographic diversity of all the mobile
money apps we analyze.

ACM Transactions on Privacy and Security, Vol. 20, No. 3, Article 11. Publication date: August 2017.
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We focus on Android applications in this article because Android has the largest market share
worldwide (Ong 2014), and far more mobile money applications are available for Android than
iOS. However, while we cannot make claims about iOS apps that we did not analyze, we do note
that most errors disclosed in Section 4 are possible in iOS and are not specific to Android.

3.3 Manual Analysis Process

Our analysis is the first of its kind to perform an in-depth analysis of the protocols used by these
applications as well as inspect both ends of the TLS sessions they may use. Each layer of the commu-
nication builds on the last; any error in implementation potentially affects the security guarantees
of all others. This holistic view of the entire app at multiple layers offers a deep view of the fragility
of these systems.

In order to accomplish this, our analysis consisted of two phases. The first phase provided an
overview of the functionality provided by the app; this included analyzing the app’s code and
manifest and testing the quality of any TLS implementations on remote servers. Where possible,
we obtained an in-country phone number and created an account for the mobile money system.
The overview phase was followed by a reverse-engineering phase involving manual analysis of
the code. If we had an account for the app, we executed it and verified any findings we found in
the code.

Our main interest is in verifying the integrity of these sensitive financial apps. While privacy is-
sues like International Mobile Equipment Identity (IMEI) or location leakage are concerning (Enck
et al. 2011), we focus on communications between the app and the IP or SMS backend systems,
where an adversary can observe, modify, and/or generate transactions.

Phase 1: Inspection

In the inspection phase, we determined the basic functionality and structure of the app in order
to guide later analysis. The first step of the analysis was to obtain the application manifest using
apktool (Apktool 2016). We then used a simple script to generate a report identifying each app
component (i.e., activities, services, content providers, and broadcast receivers) as well as the per-
missions declared and defined by the app. This acted as a high-level proxy for understanding the
capabilities of the app. With this report, we could note interesting or dangerous permissions (e.g.,
write_external_storage can leak sensitive information) and which activities are exported to
other apps (which can be used to bypass authentication).

The second step of this phase was an automated review of the Dalvik bytecode. We used the
Baksmali (Smali 2014) tool to disassemble the application dex file. While disassembly provides
the Dalvik bytecode, this alone does not assist in reasoning about the protocols, dataflows, and
behavior of an application. Further inspection is still required to understand the semantic context
and interactions of classes and functions.

After obtaining the Dalvik bytecode, we used a script to identify classes that use interesting li-
braries; these included networking libraries, cryptography libraries (including java.security and
javax.crypto and Bouncy Castle [2014]), well-known advertising libraries (as identified by Chen
et al. (2014)), and libraries that can be used to evade security analysis (like Java ClassLoaders).
References to these libraries are found directly in the Dalvik assembly with regular expressions.
The third step of the overview was to manually take note of all packages included in the app (e.g.,
analytics libraries, user interface code, HTTP libraries).

While analyzing the app’s code can provide insight into the application’s behavior and
client/server protocols, it does not provide any indication of the security of the connection as it is
negotiated by the server. For example, servers can offer vulnerable versions of TLS, weak signature
algorithms, and/or expired or invalid certificates. Thus, the final step of the analysis was to check
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each application’s TLS endpoints using the Qualys SSL Server Test (Qualys 2014).2 This test pro-
vides a comprehensive view of the configuration and capabilities of a server’s TLS implementation.

Phase 2: Reverse Engineering

In order to complete our holistic view of both the application protocols and the client/server TLS
negotiation, we reverse engineered each app in the second phase. We used the commercial inter-
active JEB Decompiler (2014) to provide Java syntax for most classes. While we primarily used
the decompiled output for analysis, we also reviewed the Dalvik assembly to find vulnerabili-
ties. Where we were able to obtain accounts for mobile money accounts, we also confirmed each
vulnerability with our accounts when doing so would not negatively impact the service or other
users.

Rather than start by identifying interesting methods and classes, we began the analy-
sis by following the application lifecycle as the Android framework does, starting with the
Application.onCreate() method and moving on to the first Activity to execute. From there, we
constructed the possible control paths a user can take from the beginning through account reg-
istration, login, and money transfer. This approach ensures that our findings are actually present
in live code and accordingly leads to conservative claims about vulnerabilities.3 After tracing con-
trol paths through the Activity user interface code, we also analyze other components that have
sensitive functionality.

As stated previously, our main interest is in verifying the integrity of these financial applica-
tions. In the course of analysis, we look for security errors in the following actions: registration and
login, user authentication after login, and money transfers. These errors can be classified as im-
proper authentication procedures, message confidentiality and integrity failures (including misuse
of cryptography), highly sensitive information leakage (including financial information or authen-
tication credentials), or practices that discourage good security hygiene (e.g., permitting insecure
passwords). We discuss our specific findings in Section 4.

3.3.1 Vulnerability Disclosure. All vulnerabilities in the following section were responsibly dis-
closed to the services before public disclosure. Section 7 discusses this disclosure and the vendor
response in detail.

4 RESULTS

This section details the results of analyzing the mobile money applications. Overall, we find 28 sig-
nificant vulnerabilities across seven applications. Table 1 shows these vulnerabilities indexed by
CWE and broad categories (apps are ordered by download count). All but one application (Zuum)
presents at least one major vulnerability that harmed the confidentiality of user financial infor-
mation or the integrity of transactions, and most applications have difficulty with the proper use
of cryptography in some form. We assigned a unique identifier to each vulnerability found during
our analysis (e.g., V1: PIN logged in plaintext). Table 4 in Section 8 contains the complete list of
vulnerabilities and corresponding identifiers.

4.1 Automated Analysis

Our results for TLS vulnerabilities should mirror the output of a TLS vulnerability scanner such as
Mallodroid. Though two applications were unable to be analyzed by Mallodroid, it detects at least
one critical vulnerability in over 50% of the applications it successfully completed.

2For security reasons, Qualys does not test servers on non-standard ports or without registered domain names.
3We found several vulnerabilities in dead code. While we disclosed those findings to developers for completeness, we omit

them from this article.
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Table 1. Weaknesses in Mobile Money Applications, Indexed to Corresponding CWE Categories

Airtel Oxigen

ID Common Weakness Enumeration Money mPAY Wallet GCash Zuum MOM mCoin

SSL/TLS & Certificate Verification

CWE-295 Improper Certificate Validation ✗ ✗ ✗ ✗

Non-standard Cryptography

CWE-330 Use of Insufficiently Random Values ✗ ✗ ✗

CWE-322 Key Exchange without Entity Auth. ✗ ✗

Access Control

CWE-88 Argument Injection or Modification ✗

CWE-302 Auth. Bypass by Assumed-Immutable Data ✗ ✗

CWE-521 Weak Password Requirements ✗

CWE-522 Insufficiently Protected Credentials ✗

CWE-603 Use of Client-Side Authentication ✗

CWE-640 Weak Password Recovery Mechanism ✗

Info. Leakage

CWE-200 Info. Exposure ✗ ✗ ✗

CWE-532 Info. Exposure Through Log Files ✗ ✗ ✗

CWE-312 Cleartext Storage of Sensitive Info. ✗ ✗ ✗

CWE-319 Cleartext Transmission of Sensitive Info. ✗ ✗ ✗

The CWE Database is a Comprehensive Taxonomy of Software Vulnerabilities Developed by MITRE (The MITRE Cor-

poration 2014) and Provide a Common Language for Software Errors.

Mallodroid produces a false positive when it detects a TLS vulnerability in Zuum, an applica-
tion that, through manual analysis, we verified was correctly performing certificate validation.
The Zuum application does contain disabled certificate validation routines, but these are correctly
enclosed in checks for development modes.

Conversely, in the case of MoneyOnMobile, Mallodroid produces a false negative. MoneyOnMo-
bile contains no TLS vulnerability because it does not employ TLS. While this can be considered a
correct operation of Mallodroid, it also does not capture the severe information exposure vulner-
ability in the app.

Overall, we find that Mallodroid, an extremely popular analysis tool for Android apps, does not
detect the correct use of TLS in an application. It produces an alert for the most secure app we
analyzed and did not produce an alert for the least. In both cases, manual analysis reveals stark
differences between the Mallodroid results and the real security of an app. A comprehensive, cor-
rect analysis must include a review of the application’s validation and actual use of TLS sessions
as well as where these are used in the application (e.g., used for all sensitive communications). Ad-
ditionally, it is critical to understand whether the remote server enforces secure protocol versions,
ciphers, and hashing algorithms. Only a manual analysis provides this holistic view of the com-
munication between application and server so that a complete security evaluation can be made.

4.2 TLS

As we discussed above, problems with TLS certificate validation represented the most common
vulnerability we found among apps we analyzed. Certificate validation methods inspect a received
certificate to ensure that it matches the host in the URL, that it has a trust chain that terminates
in a trusted certificate authority, and that it has not been revoked or expired. However, developers
are able to disable this validation by creating a new class that implements the X509TrustManager

ACM Transactions on Privacy and Security, Vol. 20, No. 3, Article 11. Publication date: August 2017.
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Table 2. Qualys Reports for Domains Associated with Branchless Banking Apps

Product Qualys Most Noteworthy

Score Vulnerabilities

Airtel Money A- Weak signature algorithm (SHA1withRSA)
mPAY 1 F- SSL2 support, Insecure Client-Initiated Renegot.
mPAY 2 F- Vulnerable to POODLE attack

Oxigen Wallet F- SSL2 support, MD5 cipher suite
Zuum A- Weak signature algorithm (SHA1withRSA)
GCash C- Vulnerable to POODLE attack
mCoin N/A Uses expired, localhost self-signed certificate

MoneyOnMobile N/A App does not use SSL/TLS

“Most Noteworthy Vulnerabilities” lists what Qualys considers to be the most dangerous elements of

the server’s configuration. mPAY contacts two domains over SSL, both of which are separately tabulated

below. Qualys would not scan mCoin because it connects to a specific IP address, not a domain.

interface using arbitrary validation methods, replacing the validation implemented in the parent
library. In the applications that override the default code, the routines were empty; that is, they do

nothing and do not throw exceptions on invalid certificates. This insecure practice was previously
identified by Georgiev et al. (2012) and is specifically targeted by Mallodroid.

Analyzing only the app does not provide complete visibility to the overall security state of
a TLS session. Server misconfiguration can introduce additional vulnerabilities, even when the
client application uses correctly implemented TLS. To account for this, we also ran the Qualys
SSL Server Test (Qualys 2014) on each of the HTTPS endpoints we discovered while analyzing
the apps. This service tests a number of properties of each server to identify configuration and
implementation errors and provide a “grade” for the configuration. These results are presented in
Table 2. Three of the endpoints we tested received failing scores due to insecure implementations of
TLS. To underscore the severity of these misconfigurations, we have included the Most Noteworthy
Vulnerabilities identified by Qualys.

mCoin. Coupling the manual analysis with the Qualys results, we found that in one case, the
disabled validation routines (V5) were required for the application to function correctly. The mCoin
Application Programming Interface (API) server provides a certificate that is issued to “localhost”
(an invalid hostname for an external service), is expired, and is self-signed (has no trust chain) (V6).
No correct certificate validation routine would accept this certificate. Therefore, without this routine,
the mCoin application would be unable to establish a connection to its server. Although Mallodroid
detected the disabled validation routines, only our full analysis can detect the relationship between
the app’s behavior and the server’s configuration.

The implications of poor validation practices are severe, especially in these critical financial ap-
plications. Adversaries can intercept this traffic and sniff cleartext personal or financial informa-
tion. Furthermore, without additional message integrity checking inside these weak TLS sessions,
a man-in-the-middle adversary is free to manipulate the inside messages.

4.3 Non-Standard Cryptography

Despite the pervasive insecure implementations of TLS, the client/server protocols that these apps
implement are similarly critical to their overall security. We found that four applications used their
own custom cryptographic systems or had poor implementations of well-known systems in their
protocols. Unfortunately, these practices are easily compromised and severely limit the integrity

ACM Transactions on Privacy and Security, Vol. 20, No. 3, Article 11. Publication date: August 2017.
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Fig. 3. The user registration flow of MoneyOnMobile. All communication is over HTTP.

and privacy guarantees of the software, giving rise to the threat of forged transactions and loss of
transaction privacy.

MoneyOnMobile. MoneyOnMobile does not use TLS. All API calls from the app use HTTP (V8,
V18). In fact, we found only one use of cryptography in the application’s network calls. During
the user registration process, the app first calls an encryption proxy web service, then sends the
service’s response to a registration web service. The call to the encryption server includes both
the user data and a fixed static key. A visualization of this protocol is shown in Figure 3.

The encryption server is accessed over the Internet via HTTP, exposing both the user and key
data. Because this data is exposed during the initial call, its subsequent encryption and delivery
to the registration service provides no security. We found no other uses of this or any other en-
cryption in the MoneyOnMobile app; all other API calls are provided unobfuscated user data as
input.

Oxigen Wallet. Like MoneyOnMobile, Oxigen Wallet does not use TLS. Oxigen Wallet’s regis-
tration messages are instead encrypted using the Blowfish algorithm, a strong block cipher. How-
ever, a long, random key is not generated for input into Blowfish (V10). Instead, only 17 bits of the
key are random. The remaining bits are filled by the mobile phone number, the date, and padding
with 0s. The random bits are generated by the Random (Google 2014c) random number generator.
The standard Java documentation (Oracle 2014) explicitly warns in its documentation that Random
is not sufficiently random for cryptographic key generation.4 As a result, any attacker can read,
modify, or spoof messages. These messages contain demographic information including first and
last name, email address, date of birth, and mobile phone number, which constitutes a privacy
concern for Oxigen Wallet’s users.

After key generation, Oxigen Wallet transmits the key in plaintext along with the message to
the server (V11). In other words, every encrypted registration message includes the key in plaintext.
Naturally, this voids every guarantee of the block cipher. In fact, any attacker who can listen to
messages can decrypt and modify them with only a few lines of code.

The remainder of client-server interactions use an RSA public key to send messages to the server.
To establish an RSA key for the server, Oxigen Wallet sends a simple HTTP request to receive an
RSA key from the Oxigen Wallet server. This message is unauthenticated, which prevents the
application from knowing that the received key is from Oxigen Wallet and not from an attacker.
Thus, an attacker can pretend to be Oxigen Wallet and send an alternate key to the app. This would
allow the attacker to read all messages sent by the client (including those containing passwords)
and forward the messages to Oxigen Wallet (with or without modifications) if desired (V12). This
RSA man-in-the-middle attack is severe and puts all transactions by a user at risk. At the very
least, this will allow an attacker to steal the password from messages. The password can later be
used to conduct illicit transactions from the victim’s account.

4Although the Android offers a SecureRandom class for cryptographically-secure generation, it does not mention its ne-

cessity in the documentation.
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Finally, responses from the Oxigen Wallet servers are not encrypted (V13). This means that
any sensitive information that might be contained in a response (e.g., the name of a transaction
recipient) can be read by any eavesdropper. This is both a privacy and integrity concern because
an attacker could read and modify responses.

GCash. Unlike Oxigen Wallet, GCash uses a static key for encrypting communications with
the remote server (V4). The GCash application package includes a file “enc.key,” which contains
a symmetric key. During the GCash login process, the user’s PIN and session ID are encrypted
using this key before being sent to the GCash servers. This key is posted publicly because it is
included with every download of GCash. An attacker with this key can decrypt the user’s PIN and
session ID if the encrypted data is captured. This can subsequently give the attacker the ability to
impersonate the user.

The session ID described above is generated during the login process and passed to the server to
provide session authentication in subsequent messages. We did not find any other authenticator
passed in the message body to the GCash servers after login (V3). The session ID is created using
a combination of the device ID (e.g., IMEI) and the device’s current date and time. Android will
provide this device ID to any application with the read_phone_state permission, and device IDs
can be spoofed on rooted phones. Additionally, the IMEI is frequently abused by mobile apps for
persistent tracking of users (Enck et al. 2014), and is thus also stored in the databases of hundreds
of products.

Although the session ID is not a cryptographic construct, the randomness properties required
by a strong session ID match those needed by a strong cryptographic key. This lack of random-
ness results in predictable session IDs and can then be used to perform any task as the session’s
associated user.

Airtel Money. Airtel Money performs a similar mistake while authenticating the user. When
launching the application, the client first sends the device’s phone number to check if there is
an existing Airtel Money account. If so, the server sends back the user’s account number in its
response. Although this response is transmitted via HTTPS, the app does not validate certificates
(V5), creating a compound vulnerability where this information can be discovered by an attacker.

Sensitive operations are secured by the user’s 4-digit PIN. The PIN is encrypted in transit using
a weakly-constructed key (V16) that concatenates the device’s phone number and account number
in the following format:

Keyenc = j7zgy1yv ‖ phone# ‖ account# (1)

The prefixed text in the key is immutable and included with the application. Due to the weak TLS
implementation during the initial messages, an adversary can obtain the user’s account number
and decrypt the PIN. The lack of randomness in this key again produces a vulnerability that can
lead to user impersonation.

4.4 Access Control

A number of the applications that we analyzed used access control mechanisms that were poorly
implemented or relied on incorrect or unverifiable assumptions that the user’s device and its cel-
lular communications channels are uncompromised. Multiple applications relied on SMS commu-
nications, but this channel is subject to a number of points of interception (Traynor et al. 2008).
For example, another application on the device with the receive_sms permission could read the
incoming SMS messages of the mobile money application. This functionality is outside the con-
trol of the mobile money application. Additionally, an attacker could have physical access to an
unlocked phone, where messages can be inspected directly by a person. This channel does not,
therefore, provide strong confidentiality or integrity guarantees.
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MoneyOnMobile. The MoneyOnMobile app presents the most severe lack of access control
we found among the apps we analyzed. The service uses two different PINs, the MPIN and TPIN,
to authenticate the user for general functionality and transactions. However, we found that these
PINs only prevent the user from moving between Android activities. In fact, the user’s PINs are
not required to execute any sensitive functionality via the backend APIs. All sensitive API calls
(e.g., balance inquiry, mobile recharge, bill pay) except PIN changes can be executed with only

knowledge of the user’s mobile phone number and two API calls (V9). MoneyOnMobile deploys no
session identifiers, cookies, or other stateful tracking mechanisms during the app’s execution;
therefore, none of these are required to exploit the service.

The first required API call takes the mobile number as the input and outputs various parameters
of the account (e.g., Customer ID). These parameters identify the account as input in the subse-
quent API call. Due to the lack of any authentication on these sensitive functions, an adversary
with no knowledge of the user’s account can execute transactions on the user’s behalf. Since the
initial call provides information about a user account, this call allows an adversary to brute-force
phone numbers in order to find MoneyOnMobile users. This call also provides the remainder of the
information needed to perform transactions on the account, severely compromising the security
of the service.

mPAY. While the MoneyOnMobile servers do not require authentication before performing
server tasks, we found the opposite is true with mPAY. The mPAY app accepts and performs unau-
thenticated commands from its server (V17). The mPAY app uses a web/native app hybrid that
allows the server to send commands to the app through the use of a URL parameter “method.”
These methods instruct the app to perform many actions, including starting the camera, opening
the browser to an arbitrary URL, or starting an arbitrary app. If the control flow of the web ap-
plication from the server side is secure, and the HTTP channel between client and server is free
from injection or tampering, it is unlikely that these methods could be harmful. However, if an
attacker can modify server code or redirect the URL, this functionality could be used to attack
mobile users. Potential attacks include tricking users into downloading malware, providing infor-
mation to a phishing website, or falling victim to a cross-site request forgery (CSRF) attack. As we
discussed in the previous results, mPAY does not correctly validate the certificates (V5) used for
its TLS sessions, and so these scenarios are unsettlingly plausible.

GCash. Although GCash implements authentication, it relies on easily-spoofable identity in-
formation to secure its accounts. During GCash’s user registration process, the user selects a PIN
for future authentication. The selected PIN is sent in plaintext over SMS (V2) along with the user’s
name and address. GCash then identifies the user with the phone number used to send the SMS
message. This ties the user’s account to their phone’s SIM card. Unfortunately, SMS spoofing ser-
vices are common, and these services provide the ability for an unskilled adversary to send mes-
sages appearing to be from an arbitrary number (Enck et al. 2005). SIM cards can be damaged, lost,
or stolen, and since the wallet balance is tied to this SIM, it may be difficult for a user to reclaim
their funds.

Additionally, GCash requires the user to select a 4-digit PIN to register an account. As previously
mentioned, this PIN is used to authenticate the user to the service. This allows only 10,000 possible
combinations of PINs, which is quickly brute-forceable, though more intelligent guessing can be
performed using data on the frequency of PIN selection (Berry 2012). We were not able to create
an account with GCash to determine if the service locks accounts after a number of incorrect login
attempts, which is a partial mitigation for this problem.

Oxigen Wallet. Like GCash, Oxigen Wallet also allows users to perform several sensitive ac-
tions via SMS. The most severe of these is requesting a new password (V15). As a result, any
attacker or application with access to a mobile phone’s SMS subsystem can reset the password.
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That password can be used to login to the app or to send SMS messages to Oxigen Wallet for illicit
transactions.

4.5 Information Leakage

Several of the analyzed applications exposed personally-identifying user information and/or data
critical to the transaction integrity through various methods, including logging and preference
storage.

4.5.1 Logging. The Android logging facility provides developers the ability to write messages
to understand the state of their application at various points of its execution. These messages are
written to the device’s internal storage so they can be viewed at a future time. If the log mes-
sages were visible only to developers, this would not present the opportunity for a vulnerability.
However, prior to Android 4.1, any application can declare the read_logs permission and read
the log files of any other application. That is, any arbitrary application (including malicious ones)
may read the logs. According to statistics from Google (2014a), 20.7% of devices run a version of
Android that allows other apps to read logs.

mPAY. mPAY logs include user credentials, identifiers, and card numbers (V1).
GCash. GCash writes the plaintext PIN using the verbose logging facility (V1). The Android

developer documentation states that verbose logging should not be compiled into production ap-
plications (Google 2014b). Although GCash has a specific devLog function that only writes this
data when a debug flag is enabled, there are still statements without this check. Additionally, the
session ID is also logged using the native Android logging facility without checking for a devel-
oper debug flag. An attacker with GCash log access can identify the user’s PIN and the device ID,
which could be used to impersonate the user.

MoneyOnMobile. These logs include server responses and account balances (V1).

4.5.2 Preference Storage. Android provides a separate mechanism for storing preferences. This
system has the capability of writing the stored preferences to the device’s local storage, where
they can be recovered by inspecting the contents of the preferences file. Often, developers store
preferences data in order to access it across application launches or from different sections of the
code without needing to explicitly pass it. While the shared preferences are normally protected
from the user and other apps, if the device is rooted (either by the user or a malicious application),
the shared preferences file can be read.

GCash. GCash stores the user’s PIN in this system (V0). The application clears these prefer-
ences in several locations in the code (e.g., logout, expired sessions); however, if the application
terminates unexpectedly, these routines may not be called, leaving this sensitive information on
the device.

mPAY. mPay stores mobile phone numbers and customer IDs in its preferences (V0).
mCoin. Additionally, mCoin stores the user’s name, birthday, and certain financial informa-

tion such as the user’s balance (V0). We also found that mCoin exposes this data in transmission.
Debugging code in the mCoin application is also configured to forward the user’s mCoin shared
preferences to the server with a debug report (V7). As noted above, this may contain the user’s per-
sonal information. This communication is performed over HTTP and sent in plaintext, providing
no confidentiality for the user’s data in transmission.

4.5.3 Other Leakage. Oxigen Wallet. We discussed in Section 4.3 that requests from the Oxi-
gen Wallet client are encrypted (insecurely) with either RSA or Blowfish. Oxigen Wallet also dis-
closes mobile numbers of account holders (V14). On sign up, Oxigen Wallet sends a GetProfile
request to a server to determine if the mobile number requesting a new account is already
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associated with an email address. The client sends an email address, and the server sends a full
mobile number back to the client. The application does appear to understand the security need for
this data as only the last few digits of the mobile number are shown on the screen (the remain-
ing digits are replaced by Xs). However, it appears that the full mobile number is provided in the
network message. This means that if an attacker could somehow read the full message, he could
learn the mobile number associated with the email address.

Unfortunately, the GetProfile request can be sent using the Blowfish encryption method pre-
viously described, meaning that an attacker could write his own code to poll the Oxigen Wallet
servers to get mobile numbers associated with known email addresses. This enumeration could be
used against a few targets or it may be done in bulk as a precursor to SMS spam, SMS phishing, or
voice phishing. This bulk enumeration may also tax the Oxigen Wallet servers and degrade ser-
vice for legitimate users. This attack would not be difficult for an attacker with even rudimentary
programming ability.

4.6 Zuum

Zuum is a Brazilian mobile money application built by Mobile Financial Services, a partnership
between Telefonica and MasterCard. While many of the other apps we analyzed were developed
solely by cellular network providers or third-party development companies, MasterCard is an es-
tablished company with experience building these types of applications.

This app is particularly notable because we did not find in Zuum the major vulnerabilities
present in the other apps. In particular, the application uses TLS sessions with certificate valida-
tion enabled and includes a public key and performs standard cryptographic operations to protect
transactions inside the session. Mallodroid detects Zuum’s disabled certificate validation routines,
but our manual analysis determines that these routines would not run. We discuss MasterCard’s
involvement in the Payment Card Industry standards, the app’s terms of service, and the ramifi-
cations of compromise in Section 5.

4.7 Verification

We obtained accounts for MoneyOnMobile, Oxigen Wallet, and Airtel Money in India. For each
app, we configured an Android emulator instance to forward its traffic through a man-in-the-
middle proxy. In order to remain as passive as possible, we did not attempt to verify any transaction
functionality (e.g., adding money to the account, sending or receiving money, paying bills). We
were able to successfully verify every vulnerability that we identified for these apps.

5 DISCUSSION

In this discussion section, we make observations about authentication practices and our TLS find-
ings, regulations governing these apps, and whether smartphone applications are in fact safer than
the legacy apps they replace.

Why do these apps use weak authentication? Numeric PINs were the authentication method of
choice for the majority of the apps studied—only three apps allow use of a traditional password.
This reliance on PINs is likely a holdover from earlier mobile money systems developed for fea-
ture phones. While such PINs are known to be weak against brute-force attacks, they are chosen
for SMS or USSD systems for two usability reasons. First, they are easily input on limited phone
interfaces. Second, short numeric PINs remain usable for users who may have limited literacy (es-
pecially in Latin alphabets). Such users are far more common in developing countries, and prior
research on secure passwords has assumed user literacy (Shay et al. 2014). Creating a distinct
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strong password for the app may be confusing and limit user acceptability of new apps, despite
the clear security benefits.

Beyond static PINs, Airtel Money and Oxigen Wallet (both based in India) use SMS-provided
one-time passwords to authenticate users. While effective at preventing remote brute-force at-
tacks, this step provides no defense against the other attacks we describe in the previous section.

Why do these apps fail to validate certificates? While this work and prior works have shown that
many Android apps fail to properly validate TLS certificates (Fahl et al. 2012), the high number
of branchless banking apps that fail to validate certificates is still surprising, especially given the
mission of these apps. Georgiev et al. (2012) found that many applications improperly validate cer-
tificates, yet identify the root cause as poorly designed APIs that make it easy to make a validation
mistake. One possible explanation is that certificate validation was disabled for a test environment,
which had no valid certificate. When the app was deployed, developers did not test for improper
validation and did not remove the test code that disabled host name validation. Fahl et al. (2013)
found this explanation to be common in developer interviews, and they also explore other reasons
for TLS vulnerabilities, including developer misunderstandings about certificate validation.

In the absence of improved certificate management practices at the application layer, one pos-
sible defense is to enforce sane TLS configurations at the operating system layer. This capability
is demonstrated by Fahl et al. (2013) for Android, while Bates et al. (2014) present a mechanism
for Linux that simultaneously facilitates the use of SSL trust enhancements. In the event that the
system trusts compromised root certificates, a solution like DVCert (Dacosta et al. 2012) could be
used to protect against man-in-the-middle attacks.

Are legacy systems more secure? In Section 10, we noted that prior work had found that legacy
systems are fundamentally insecure as they rely principally on insecure Global System for Mobile
communication (GSM) bearer channels. Those systems rely on bearer channel security because of
the practical difficulties of developing and deploying secure applications to a plethora of feature
phone platforms with widely varying designs and computational capabilities. In contrast, we look
at apps developed for relatively homogenous, well-resourced smartphones. One would expect that
the advanced capabilities available on the Android platform would increase the security of branch-
less banking apps. However, given the vulnerabilities we disclose, the branchless banking apps we
studied for Android put users at a greater risk than legacy systems. Attacking cellular network
protocols, while shown to be practical (Traynor et al. 2008), still has a significant barrier to entry
in terms of equipment and expertise. In contrast, the attacks we disclose in this article require
only a laptop, common attack tools, and some basic security experience to discover and exploit.
Effectively, these attacks are easier to exploit than the previously disclosed attacks against SMS
and USSD interfaces.

Does regulation help? In the United States, the PCI Security Standards Council released a Data
Security Standard (PCI DSS) (PCI DSS 2016), which govern the security requirements for entities
that handle cardholder data (e.g., card numbers and expiration dates). The council is a consortium
of card issuers including Visa, MasterCard, and others that cooperatively develop this standard.
Merchants that accept credit card payments from these issuers are generally required to adhere to
the PCI DSS and are subject to auditing.

The DSS document includes requirements, testing procedures, and guidance for securing devices
and networks that handle cardholder data. These are not, however, specific enough to include
detailed implementation instructions. The effectiveness of these standards is not our main focus;
we note that the PCI DSS can be used as a checklist-style document for ensuring well-rounded
security implementations.
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In 2008, the Reserve Bank of India (RBI) issued guidelines for mobile payment systems (Reserve
Bank of India 2008). (By their definition, the apps we study would be included in these guide-
lines). In 12 short pages, they touch on aspects as broad as currencies allowed, KYC/AML poli-
cies, inter-bank settlement policies, corporate governance approval, legal jurisdiction, consumer
protection, and technology and security standards for a myriad of delivery channels. The secu-
rity standards give implementers wide leeway to use their best judgment about specific security
practices. MoneyOnMobile, which had the most severe security issues among all of the apps we
manually analyzed, prominently displays its RBI authorization on its website.

Some prescriptions stand out from the rest: an objective to have “digital certificate based in-
quiry/transaction capabilities,” a recommendation to have a mobile PIN that is encrypted on the
wire and never stored in cleartext, and use of the mobile phone number as the chief identifier.
These recommendations may be responsible for certain design decisions of Airtel Money and Ox-
igen Wallet (both based in India). For example, the digital certificate recommendation may have
driven Oxigen Wallet developers to develop their (very flawed) public key encryption architecture.
These recommendations also explain why Airtel Money elected to further encrypt the PIN (and
only the PIN) in messages that are encapsulated by TLS. Further, the lack of guidance on what
“strong encryption” entails may be partially responsible for the security failures of Airtel Money
and Oxigen Wallet. Finally, we note that we believe that Airtel Money, while still vulnerable, was
within the letter of the recommendations.

To our knowledge, other mobile money systems studied in this article are not subject to such
industry or government regulation. While a high-quality, auditable industry standard may lead
to improved branchless banking security, it is not clear that guidelines like RBI’s currently make
much of a difference.

6 TERMS OF SERVICE & CONSUMER LIABILITY

After uncovering technical vulnerabilities for branchless banking, we investigated their potential
implications for fraud liability. In the United States, the consumer is not held liable for fraudulent
transactions beyond a small amount. This model recognizes that users are vulnerable to fraud that
they are powerless to prevent, combat, or detect prior to incurring losses.

To determine the model used for the branchless banking apps we studied, we surveyed the
Terms of Service (ToS) for each of the seven analyzed apps. The Airtel Money (Airtel TOS 2015),
GCash (GCash TOS 2015), mCoin (mCoin TOS 2015), Oxigen Wallet (Oxigen TOS 2015), Money-
OnMobile (Money on Mobile TOS 2015), and Zuum (Zuum TOS 2015) terms all hold the customer
solely responsible for most forms of fraudulent activity. Each of these services hold the customer
responsible for the safety and security of their password. GCash, mCoin, and Oxigen Wallet also
hold the customer responsible for protecting their SIM (i.e., mobile phone). GCash provides a com-
plaint system, provided that the customer notifies GCash in writing within 15 days of the disputed
transaction. However, they also make it clear that erroneous transactions are not grounds for
dispute. mPAY’s terms (mPay TOS 2015) are less clear on the subject of liability. They provide a
dispute resolution system, but do not detail the circumstances for which the customer is respon-
sible. Across the body of these terms of service, it is overwhelmingly clear that the customer is
responsible for all transactions conducted with their PIN/password on their mobile device. This
remains true in August 2016.

The presumption of customer fault for transactions is at odds with the findings of this work.
The basis for these arguments appear to be that, if a customer protects their PIN and protects
their physical device, there is no way for a third party to initiate a fraudulent transaction. We
have demonstrated that this is not the case. Passwords can be easily recovered by an attacker. Six
of the seven apps we manually analyzed transmit authentication data over insecure connections,

ACM Transactions on Privacy and Security, Vol. 20, No. 3, Article 11. Publication date: August 2017.



Mo(bile) Money, Mo(bile) Problems: Analysis of Branchless Banking Applications 11:17

Table 3. 2016 Automated Qualys Results

Worst Qualys Grade Endpoint Grades
Grade (# Apps) (# Apps, not # domains)

A 4 (17%) 14 (61%)
B 3 (13%) 6 (26%)
C 5 (22%) 8 (35%)
F 5 (22%) 8 (35%)

Invalid Certificate 4 (17%) 6 (26%)
No HTTPS Support 2 (9%) 2 (9%)

allowing them to be recovered in transit. Additionally, with only brief access to a customer’s phone,
an attacker could read GCash PINs out of the phone logs or trigger the Oxigen Wallet password
recovery mechanism. Even when the mobile device and SIM card are fully under customer con-
trol, unauthorized transactions can still occur, due to the pervasive vulnerabilities found in these
six apps. By launching a man-in-the-middle attack, an adversary would be able to tamper with
transactions while in transit, misleading the provider into believing that a fraudulent transaction
originated from a legitimate user. These attacks are all highly plausible. Exploits of the identified
vulnerabilities are not probabilistic, but would be 100% effective. With only minimal technical ca-
pability, an adversary could launch these attacks given the ability to control a local wireless access
point. This litany of vulnerabilities comes only from an analysis of client-side code. Table 3 hints
that there may be further server side configuration issues, to say nothing of the security of custom
server software, system software, or the operating systems used.

Similar to past findings for the “Chip & Pin” credit card system (Murdoch et al. 2010), it is pos-
sible that these apps are already being exploited in the wild, leaving consumers with no recourse
to dispute fraudulent transactions. Based on the discovery of rampant vulnerabilities in these ap-
plications, we feel that the liability model for branchless banking applications must be revisited.
Many of the vulnerabilities and attacks in this article have been found in applications outside of
the mobile money industry, and mobile money applications face equivalent technical threat models
to banking applications in the developing world. However, because these models place all of the
liability of compromise on the end user, users of these systems are exposed to risk of much greater
losses. Providers must not marry such vulnerable systems with a liability model that refuses to
take responsibility for the technical flaws, and these realities could prevent sustained growth of
branchless banking systems due to the high likelihood of fraud.

7 VENDOR AND PUBLIC RESPONSE

We published the first version of this work at the USENIX Security Symposium in August
2015 (Reaves et al. 2015). Two months prior to the public release of the article, we contacted each of
the vendors of the six manually analyzed applications. We provided each vendor with a detailed de-
scription of the vulnerabilities and practical fixes to the problems we discovered. We shared these
detailed vulnerability reports only with the vendors, and have not made their specific contents
(e.g., method names, recovered source files) public.

The act of informing the vendors itself proved difficult. Only one of the vendors had a publicly-
listed security contact. For the majority of the remaining applications, we were forced to sub-
mit these reports to multiple generic contact email addresses listed on either their home pages
or within the app market. Our attempts to disclose the vulnerabilities to one particular vendor
resulted in communications with multiple accounts, their helpdesk, and the generic feedback
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addresses, each telling us that security was the job of the other. In the end, we attempted to sub-
mit these vulnerabilities to the vendors multiple times over the course of the four month period
without any acknowledgment.

Within hours of the article being covered by the Wall Street Journal (Valentino-Devries 2015), all
vendors responded to our previous queries. One vendor claimed to have never received any reports
from us, only later to acknowledge their receipt upon further investigation. Vendor responses ran
the gamut. Some vendors thanked us for the detailed reports, and a subset noted that they would
make the recommended changes to their applications to improve security. One vendor, Airtel,
argued that because they moved functionality from the MyAirtel app to a new Airtel Money app,
our results were invalid, and insisted that we retract them. However, given that our analysis was
correct for that application at the time, we stood by our results and offered to publicly discuss
the specifics. Airtel responded by sending us a copy of their newest application and asked us to
reanalyze it. Our limited resources prevented us from immediately responding to Airtel’s request.
More critically, we felt that such a “do-over” was unfair to all of the other application vendors. As
such, we decided to wait until all vendors had the time to make the recommended changes and
re-evaluate the industry. We believe this approach not only serves as scientific validation of our
previous results, but also created an opportunity to measure the effectiveness of our disclosures.

Since publishing the initial article, we have worked judiciously with stakeholders across the en-
tire mobile money ecosystem. These include regulators at the International Telecommunications
Union (ITU), non-governmental organizations including USAID and the World Bank’s Consulta-
tive Group to Assist the Poor (CGAP), industry representatives, the United States Department of
State, and a number of foundations. We traveled to countries including the Democratic Republic of
Congo, Mozambique, China, and Malaysia to share our results. All parties expressed great interest
not only in our work, but also in the continued growth of mobile money systems as trustworthy
institutions. Accordingly, many of these groups asked us to continue our evaluation.

Thus, we waited one year from our first analysis to see how the industry changed as a result of
our research.

8 RE-EVALUATION

We now revisit our analysis nearly one year later to determine whether the state of mobile money
has improved. We compare the security of last year’s applications with apps downloaded in March
2016 using both automated and manual analyses.

We find that the state of mobile money security for Android is essentially no better than it was in
2015 (Reaves et al. 2015). In particular, mobile money applications remain vulnerable to TLS man-
in-the-middle attacks at four times the rate of normal apps5 and nearly half only contact servers
with insecure TLS configurations. Our preliminary manual analysis showed that the applications
we inspected have not repaired critical vulnerabilities in their applications, even while they have
continued development of non-security aspects of these applications. Ultimately, more work is
needed on the part of researchers, regulators, and organizations, but most of all from developers
of mobile money applications themselves.

The following sections detail our new automated analyses, the results of those analyses, and a
summary and discussion of our re-evaluation of the applications we manually analyzed in 2015.
In total, this work is the result of hundreds of man-hours of additional analysis.

5Compared to the base rate reported in Fahl et al. [2012].
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8.1 Automated Analysis

In our re-evaluation, we again use Mallodroid as an indicator of security in mobile money appli-
cations. We also use lightweight static analysis to allow us to evaluate server-side configurations
of mobile money applications in an automated fashion.

8.1.1 Mallodroid Results. We used Mallodroid to analyze new versions of all apps studied in
2015 as well as an additional six apps newly available in 2016. Two apps from 2015 failed to analyze,
three apps from 2016 failed to analyze, and two apps were no longer available in 2016. We found
that of the 40 remaining apps that had results for both 2015 and 2016, 16 apps (40%) remained
safe, 12 (30%) remained vulnerable, 4 apps (10%) developed new vulnerabilities, and only 8 apps
(20%) corrected vulnerabilities present in 2015. Of the six apps new to 2016, three had no TLS
vulnerability, one was vulnerable, and two failed to analyze. Ultimately, only 20% of apps that
were vulnerable in 2015 were fixed in 2016, indicating only a meager improvement in security.
Moreover, mobile money apps are still far more likely to have a TLS vulnerability than Android
apps in the typical Google Play market, as reported by Fahl et al. (2012).

8.1.2 Using Qualys. In 2015, we ran Qualys solely on the apps that we manually analyzed. How-
ever, in 2016, we ran Qualys on all mobile money apps collected in 2016. It was not practical to
manually analyze every app to identify service endpoints, so to approximate the set of servers that
apps connect to, we use a regular expression to scan the disassembled class files for strings that ap-
pear to be an HTTP URL. We then manually analyze the extracted domains to remove common do-
mains unlikely to be related to the mobile money functionality (e.g., facebook.com). This technique
is not able to determine if a domain is actually contacted during the regular execution of an app.
For example, we extract a number of testing domains that would only be run in debugging versions
of the app and are not accessible externally. This technique could also miss domains that might be
constructed programmatically during execution. Nevertheless, this analysis provides insight into
the domains contacted by mobile money apps. We next discuss our findings from this analysis.

8.1.3 Qualys Results. After manually filtering common domains unrelated to mobile money
functionality, we recovered a total of 91 HTTP domain endpoints6 from 25 apps in the 2016 app
collection. Of those, 11 endpoints indicated they were for testing only, 4 endpoints had no valid
domain records, and another 12 were unresponsive to requests. Two apps had no reachable end-
points, so the remainder of this section discusses an analysis of 23 apps in total.

The automated Qualys analysis provides insight into the state of endpoints. However, because
we are examining many endpoints for some apps, each having a potentially different grade, sum-
marizing these results is not simple. For example, averages are not appropriate because an app may
have one secure endpoint and another that leaks credentials. However, it could be the case for that
same app that most communication is over secure channels. Thus, we analyze the test results in
two ways: a “worst case” analysis that considers the lowest grade an app receives, and an analysis
that determines the percentage of apps that contact a domain with a specific grade. This second
analysis recognizes that most apps are contacting servers with good TLS configurations but may
still be vulnerable.

Table 3 presents these results. Column two shows that only 12 apps (52%) have endpoints whose
worst grade is passing (“C” or better), so only roughly half of mobile money apps are certain to use
secure TLS endpoints. The table shows, in column 3, that while many apps contact safe endpoints,
they also contact dangerous ones as well. While 14 apps (61%) contacted an endpoint with a score
of “A,” 8 apps (35%) also contacted failing endpoints. In fact, nine apps (39%) contacted both a

6Qualys will not scan IP addresses or non-standard ports, so these were removed from the list of endpoints to be analyzed.
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passing endpoint and a failing endpoint (i.e., graded “F,” having an invalid certificate, or that failed
to support HTTPS at all). Of the 14 apps with both Qualys and Mallodroid results, we find that 3
out of the 4 apps with failing Mallodroid scores also have failing Qualys TLS configurations.

In addition to our automated analysis, we also reviewed the results from the apps that we man-
ually analyzed. We find that in some cases, applications improved in security, but in others, no
changes were made, while others still had grades that decreased owing to vulnerabilities in TLS
that were not known at the time of our first analysis. Both Airtel Money and GCash had grades
that decreased from passing to failing because of newly-discovered TLS vulnerabilities. GCash
was vulnerable to the LogJam attack (Adrian et al. 2015), while Airtel Money was vulnerable to
CVE-2016-2017. MCoin does not even have a Qualys score as it still uses an unsafe, self-signed cer-
tificate issued to localhost. mPay was the only application we tested whose TLS configuration
significantly improved (from “F” to “A”).

Overall, the low scores in both Qualys analyses are problematic in their own right. In the case of
invalid certificates or no HTTPS, it means that no secure communication is likely occurring. In the
case of low SSL test grades, it means that services make themselves vulnerable to cryptographic
attacks that threaten the safety of the protocol. However, TLS configuration is just one aspect of
operational security, and we speculate that if services are failing to correctly maintain their TLS
infrastructure, there will be many other operational aspects that are neglected.

8.2 Manual Analysis

We also repeated manual analysis on updated versions of the applications that were manually an-
alyzed in 2015. We obtained new copies of all the apps from the Google Play market on March 2,
2016. We then decompiled and reverse engineered these applications. Our primary research ques-
tion was: “did these applications fix their critical security vulnerabilities?” As a result, our analysis
focused solely on confirming whether or not these vulnerabilities were still present in these apps.
Even with knowledge of the prior app versions, this was still a significant undertaking. We note
that all but mCoin had been updated according to the version number listed in the Google Play
market. Many of them saw significant design changes, meaning that re-confirming the vulnerabil-
ity was non-trivial.

To better understand how much development occurred on each application, we used the An-
drosim application similarity tool included in Androguard (Desnos and Gueguen 2011). This tech-
nique uses signatures of methods to determine how many methods two applications share and
produces a measurement of similarity between the apps. We used Androsim to compare the 2015
and 2016 versions of each application. While mCoin was unchanged in our evaluation period, all
other applications examined saw significant development activity in the form of new code. This
new code includes new analytics libraries, changes to user interfaces, and new functionality. The
similarities ranged from 67% in the case of GCash to a remarkable 9.7% for MoneyOnMobile. This
means that, for example, the 2016 version of MoneyOnMobile shared only 9.7% of methods with
the 2015 version. Table 4 includes similarity metrics for manually analyzed apps.

A summary of our repeated manual analysis findings are represented in Table 4. This table
presents each manually analyzed app and the index of the vulnerability label as defined in Section 4.
As shown in the table, we find that the vast majority of applications have taken few, if any, steps to
improve their security, despite significant development in other areas. This is the case even after
responsible disclosure followed by press coverage, which we detailed in Section 7. This table also
indicates a score indicating the authors’ subjective assessment of the severity of the vulnerability.

8.2.1 Airtel Money. In 2015, we analyzed the MyAirtel app (package name com.myairtelapp),
which, at that time, allowed for administering customer accounts for mobile service as well as
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Table 4. Status of Previously Identified Vulnerabilities

Vulnerability MyAirtel GCash mPay MCoin Money on Oxigen

ID Score 2015/2016 Similarity 10.0% 67.5% 46.2% 100% Mobile 9.68% Wallet 49.2%

V0 Med. Sensitive information stored in shared

preferences

x x x

V1 Med. Sensitive information logged in plaintext x � x

V2 High PIN sent via SMS during registration x

V3 High Session ID weakly constructed x

V4 Crit. Symmetric encryption key packagedwith

application

new x

V5 Crit. Disabled TLS certificate validation � x � x

V6 Crit. SSL certificate on API server is not

trustworthy

x

V7 Med. ACRA debug code mishandles user

information

x

V8 Crit. Uses plaintext HTTP endpoints � x

V9 Crit. Fails to authenticate users to the service x

V10 High Low entropy key generated �
V11 Crit. Encryption key generated on device and

transmitted in plaintext

x

V12 Crit. Public key distribution vulnerable to

man-in-the-middle attack

x

V13 Crit. Messages from server to client have no

cryptographic protection

x

V14 Med. Discloses mobile numbers of account

holders in network message

x

V15 High Weak SMS password reset x

V16 Crit. Encrypts a user pin by using a weak key �
V17 Crit. Accepts/performs unauthorized commands

from server

x

�: Resolved Vulnerability

x: Unresolved Vulnerability

provided an interface to Airtel’s mobile money product. After we disclosed vulnerabilities in this
product, Airtel informed us that another app—“Airtel Money” (com.airtel.money)—was now
the primary interface to their mobile money platform. In the interest of completeness, we sought
to verify old vulnerabilities present in MyAirtel as well as exame Airtel Money for any new
vulnerabilities.

MyAirtel has seen a significant update since it was initially analyzed. Androsim indicated that
the 2016 app has only 10% similar methods compared to the 2015 version. Among the changes
made is a vast reduction in the mobile money functionality of this application: it appears that
mobile money function is limited to using Airtel Money for paying one’s mobile bill.

In 2015, MyAirtel had three vulnerabilities: failing to properly validate TLS certificates (V5), en-
crypting a user PIN by using a static key (V16), and using plaintext HTTP endpoints (V8). The code
written by Airtel concerning TLS is now handled appropriately. However, an included third-party
analytics library, MoEngage, contains code that modifies the default TLS socket factory to trust
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any certificate. Messages to this library include the user’s email address and possibly the user’s
name. This example highlights the dangers of using third party code in security-sensitive applica-
tions. Some API endpoints (but not all) used by the main application function have transitioned to
HTTPS. For example, the initial request for an SMS verification PIN is sent over an HTTP endpoint
(using a custom hybrid encryption implementation), but the actual PIN is submitted over HTTPS.
Two other analytics libraries included in the code also used plain HTTP endpoints.

We did not find evidence that MyAirtel is continuing to encrypt the PIN with a fixed key for
authentication in the same way that it was in 2015. However, we did find that an analytics library
is encrypting the mobile phone number with a static key in communications with the analytics
endpoint. Given that no other data is encrypted in this manner, this may be an attempt to
obscure an identifier for data storage purposes and not for preserving confidentiality or integrity.
However, regardless of intent, this scheme guarantees that an adversary could recover the phone
number if desired.

We discovered other issues related to encryption. First is the use of weak cryptographic algo-
rithms. For example, registration information is encrypted using Triple Data Encryption Standard
(3DES) in Electronic Codebook (ECB) mode—not an indistinguishability under chosen-plaintext
attack (IND-CPA) secure mode like counter or cipher block chaining mode. Other communications
contain an encrypted timestamp. It appears to be used to guarantee freshness or as a message
authenticator; however, it is not encrypted using an authenticated encryption mode, allowing for
possible modification.

Airtel’s second mobile money app, Airtel Money, correctly uses HTTPS and TLS. Airtel Money
does include code that disables certificate validation, but it is dead code (i.e., never executed) left
over for debugging purposes or included in unused library code. However, Airtel Money was not
perfect in every regard. Airtel Money uses the same encryption technique that MyAirtel uses when
sending the phone number to an analytics server (and the key is the same).

We also discovered another example of misused cryptography in how Airtel Money stores data
on the device. Android provides a common mechanism for storing frequently used key-value pairs
called SharedPreferences. Because these are saved to local storage and could potentially be read
by other applications, Airtel Money encrypts and decrypts the keys and values when writing and
reading to Shared Preferences for certain (potentially sensitive) items including the first name,
last name, and mobile number of the user. This is a good idea, but there are several problems
with the implementation. First, the encryption key is stored in plaintext alongside the encrypted
data in the Shared Preferences. Thus, any adversary that can read the encrypted preferences can
also find the key. In the worst case, the attacker can test each shared preference until finding
the one that decrypts the other encrypted preferences. Second, the developers tried to make it
difficult to extract this key by obfuscating the preference name used to reference the stored key. The
developers compute the preference name by providing the package name (static) and the Android
ID (a device identifier available to every app) as inputs to a Secure Hash Algorithm 1 Keyed-Hash
Message Authentication Code (SHA1-HMAC)-based Password-Based Key Derivation Function 2
(PBKDF2) algorithm. Even if it were not trivial to extract all shared preferences, this obfuscation
would provide little benefit as the inputs to the name-generation function are predictable. Finally,
the developers encrypt their data using ECB mode, which does not provide IND-CPA security.

8.2.2 GCash. We identified six severe vulnerabilities (V0-V5) in GCash in 2015, including im-
proper PIN storage, logging, and transmission; improper session ID generation and logging; im-
proper symmetric encryption key storage; and disabled TLS certificate validation. In 2016, we
reanalyzed the updated GCash application. Although only 67.5% of the 2016 code is similar to the
2015 code, we found that all six vulnerabilities still remain in the app.
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Several of the remaining vulnerabilities expose a user to extensive risk. Improper PIN handling
can allow an attacker to obtain the user’s PIN and perform transactions that can hurt the user,
such as transferring money to another account. Since the PIN is the only input required to au-
thenticate the user before completing transactions, this could be detrimental to the user. A session
ID is a token passed to the server for authentication. Improper session ID handling can allow an
attacker to obtain the session ID and impersonate the user. Ultimately, with the user’s identity,
the attacker could then complete transactions. An invalid certificate is also harmful to the user.
A man-in-the-middle attack can occur, allowing an attacker to manipulate traffic and ultimately
alter transactions.

8.2.3 mCoin. In 2015, we analyzed the mCoin app and found four major security vulnerabilities
(V0, V5-V7). Those vulnerabilities included disabled TLS certificate validation, a non-trustworthy
SSL certificate on the API server, personal data stored in shared preferences, and mishandling of
user information by the debug code.

We found that the TLS certificate associated with the app URL was still expired, self-signed, and
issued to “localhost” instead of the correct URL. This vulnerability allows attackers to perform a
man-in-the-middle attack in order to manipulate traffic and alter transaction details. Also, personal
information stored in the app’s shared preferences is also harmful. An attacker with local access
can read any information written to the local device and, in turn, steal the user’s identity.

8.2.4 mPay. We discovered four vulnerabilities (V0, V1, V5, V17) in mPay during our 2015 eval-
uation, including sensitive information stored in shared preferences and logged in plaintext, dis-
abled TLS certificate validation, and unauthorized commands to and from the server. We found
that two of the four vulnerabilities still exist. The developers addressed V1 by disabling logging.
In addition, the developers addressed V5 by pinning the certificate. Improper logging and storing
sensitive data can cause leakage of sensitive data.

8.2.5 MoneyOnMobile. In 2015, we found the following three security vulnerabilities (V1, V8,
V9) in the MoneyOnMobile app: failure to encrypt messages by using plaintext HTTP endpoints,
failure to authenticate users to the service, and leakage of sensitive information in logs. As noted
in Table 4, although less than 10% of the 2016 code was similar to the 2015 code, we found that all
three of the vulnerabilities still remain.

Unencrypted messages can be read and modified by an attacker. This vulnerability can allow
an attacker to change transaction information and steal money from the user’s account. Lack of
authentication opens the door for attackers to access sensitive information and make sensitive re-
quests, such as sending money. As stated previously, logged sensitive information can be retrieved
by an attacker for malicious purposes.

8.2.6 Oxigen Wallet. We found six vulnerabilities (V10-V15) in Oxigen Wallet, including low
entropy key generation, improper key distribution, lack of proper message cryptography, improper
disclosure of mobile number, and improper SMS password management. In 2016, we found that
only one vulnerability was removed from the app (low entropy key generation). However, we
discovered that the app now uses a short static string as a seed to generate the new encryption
key, making the key predictable. We found that five of the six vulnerabilities were not properly
addressed and removed.

Lack of message confidentiality and integrity gives attackers the ability to access and modify
messages. Such manipulation could result in an unauthorized financial transaction. Insecure public
key management and lack of cryptographic protection on server to client messages can also result
in theft. The attacker can successfully launch a man-in-the-middle attack and send an alternate
key to the app. Once accomplished, the attacker will have access to messages sent from the client,

ACM Transactions on Privacy and Security, Vol. 20, No. 3, Article 11. Publication date: August 2017.



11:24 B. Reaves et al.

which could contain the user’s username and password or transaction information. Oxigen Wallet
uses SMS for password retrieval. If a message is intercepted, the attacker could steal the app, log
in as the user, and steal funds from the user’s account.

8.3 Summary

This section presented extensive evidence from automated and manual analyses of apps from
across the mobile money ecosystem that, despite interest from the security community, regulators,
and non-governmental agencies, security improvements have not occurred. Despite extensive de-
velopment in other areas of their technology, mobile money operators continue to place their users
at risk.

9 LESSONS LEARNED AND RECOMMENDATIONS

We now offer recommendations based on our experience over the past two years. We plan to con-
tinue to work with all stakeholders to ensure that these lessons are shared and recommendations
are implemented.

9.1 Security Must Be Prioritized

We spoke with a variety of stakeholders throughout the mobile money ecosystem over the course
of the last year, and many publicly expressed the need for strong security mechanisms. However,
a number of vendors indicated that security represented a significant cost to their businesses,
especially given the small margins possible per transaction. Some vendors also felt reduced
incentive to focus on providing strong security as they believed that their competitors were also
not prioritizing security.

It is our position that these beliefs are incorrect for two reasons. First, while traditional banks
often employ expensive fraud detection algorithms to identify theft, the security problems and
remedies we highlight in this work can largely be addressed without significant additional cost. For
instance, correctly handling certificates within mobile applications and configuring TLS properly
on servers adds little in terms of overhead. Moreover, certificates can be issued at low or even no
charge through a range of Certificate Authority programs such as Let’s Encrypt (Internet Security
Research Group (ISRG) 2016). It is our position that transaction security must be dealt with by
all vendors before further security mechanisms like multifactor authentication or fraud detection
algorithms can meaningfully be discussed. Second, we note that vendors such as Zuum provide
a useful counterexample to the argument that competing systems are not prioritizing security.
Because we were able to identify vendors using best practices, we argue that such practices are
not only within the realm of technical possibility, but also that competing solutions do indeed
incorporate these protections.

Software vulnerabilities emerge as a result of a complex mix of technological, educational, and
policy issues. Developers may not be aware of the dangers, they may have misplaced priorities (e.g.,
preferring to ship a vulnerable product instead of missing a deployment deadline), or temporary
code may never be replaced. It is possible that development resources are limited to fix complex
problems like poor authentication. As researchers studying the apps, our perspective is limited.
However, we see that some applications remain vulnerable despite public vulnerability disclosure
and continued development on other aspects of these apps.

We believe that security will only improve in these systems if there is sufficient incentive to do
so. Such an incentive can take several forms. For example, public disclosure of security issues in
academic literature and in the popular press may put pressure on companies to improve security.
Accordingly, we hope that by again bringing light to the issues in this community, our results
can be used to help usher all parties toward more secure operations. Another venue is industry
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self-regulation in the form of standards adopted and implemented throughout the industry. Such
self-regulation is attractive in markets where there is a perceived risk of government regulation.
We will continue to respond to the needs of the community by taking leadership in issuing rec-
ommendations on security for digital financial services within organizations such as the ITU. Of
course, carefully implemented and enforced government regulations that mandate secure systems
(and/or that make operators responsible for losses as a result of technical flaws) will also likely
improve incentives to develop secure systems.

9.2 Vendors Must Make Reporting Easy

One of the challenges we faced during the first iteration of our study was alerting the vendors
of security vulnerabilities. In spite of our repeated attempts through multiple channels, it was
not until our work was covered in the press that we were able to engage in a dialogue. Because
virtually all software systems have vulnerabilities, a strategy for dealing with future problems
should be developed.

Cyber Emergency Response Teams (CERTs) do not exist in many of the regions that benefit most
from mobile money systems, and often do not have relationships with every vendor where they are
established. Instead, we suggest that vendors take a more proactive step and create a security@
email address. This standard naming convention will make reporting security issues easier, and
will ensure that vendors do not miss reported vulnerabilities.

We are in the process of making this suggestion become reality. As part of the outreach efforts
undertaken by the authors, we are working with the GSMA, which serves as the industry group
for many of these vendors. Specifically, we are looking to incorporate this recommendation into
their industry wide Code of Conduct (The GSM Association (GSMA) 2016).

9.3 Directions for Improving Security

As shown in Figure 1, vendors claim a wide range of security protections in spite of our findings.
Without specific training to perform the complex reverse engineering and network analysis con-
ducted in this work, however, few users can validate the truth of these claims. This represents a
significant threat to both users and brands, as loss of trust in brands means both decreased rev-
enue and usage. Unfortunately, no platform and few, if any, non-browser apps provide transport
security indicators.

While not perfect, we urge mobile platform vendors (e.g., Google, Apple) to develop such in-
dicators. Many mobile browsers now use the familiar lock icons long seen in the desktop space
(Amrutkar et al. 2015), but no such standardized option exists for apps. We appreciate that the
issue of getting indicators “right” is difficult, and that many users do not understand the full con-
text of a lock icon; however, such information can be used much more quickly by expert users to
reason about transport security. It is our belief that having this operating system provided icon
would move vendors away from their own vulnerable cryptographic protocols to more standard
approaches, just as has happened in the traditional Web. Without such an indicator, it is our fear
that applications will continue to be able to make security claims with little real evidence.

There are other opportunities to improve the security of these and other applications. One such
mechanism is the App Security Improvement Program currently being conducted in the Google
Play market (Google 2016); this system scans submitted applications for common and easily de-
tected vulnerabilities and requires developers to remediate them. Another possible mechanism is
to detect potential vulnerabilities at development time by integrating security linters into common
Android development tools like Android Studio. Reaves et al. (2016) examine the limits of Android
research and provide additional directions to improve app security.
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10 RELATED WORK

Banking has been a motivation for computer security since the origins of the field. The orig-
inal Data Encryption Standard was designed to meet the needs of banking and commerce,
and Anderson’s classic paper “Why Cryptosystems Fail” looked specifically at banking security
(Anderson 1993). Accordingly, mobile money systems have been scrutinized by computer security
practitioners. Current research on mobile money systems to date has focused on the challenges
of authentication, channel security, and transaction verification in legacy systems designed for
feature phones. Some prior work has provided threat modeling and discussion of broader system-
wide security issues. To our knowledge, we are the first to examine the security of smartphone
applications used by mobile money systems.

Mobile money systems rely on the network to provide identity services; in essence, identity is
the telephone number (MS-ISDN) of the subscriber. To address physical access granting attackers
access to accounts, researchers have investigated the use of small one-time pads as authenticators
in place of PINs. Panjwani and Cutrell (2010) present a new scheme that avoids vulnerabilities with
using one-time passwords with PINs and SMS. Sharma et al. (2009) propose using scratch-off one-
time authenticators for access with supplemental recorded voice confirmations. These schemes add
complexity to the system while only masking the PIN from an adversary who can see a message.
These schemes do not provide any guarantees against an adversary who can modify messages or
who recovers a message and a pad.

SMS-based systems, in particular, are vulnerable to eavesdropping (Reaves et al. 2016) or mes-
sage tampering (Nyamtiga et al. 2013b), and so have seen several projects to bring additional cryp-
tographic mechanisms to mobile money systems (Chong 2009; Nyamtiga et al. 2013a; Cobourne
et al. 2013). Systems that use USSD, rather than SMS, as their bearer channel can also use code
executing on the SIM card to cryptographically protect messages. However, it is unknown how
these protocols are implemented or what guarantees they provide (Paik 2010).

Several authors have written papers investigating the holistic security of mobile money systems
designed exclusively for “dumbphones.” Paik (2010) notes concerns about reliance on GSM traffic
channel cryptographic guarantees, including the ability to intercept, replay, and spoof the source
of SMS messages. Panjwani (2011) fulfills the goals laid out by Paik et al. by providing a brief
threat model and a design to protect against the threats they identify. While those papers focus on
technical analysis, Martins de Almeida (2013) and Harris et al. (2013) note the policy implications
of the insecurity of mobile money.

After our initial study, Castle et al. [2016] published a complementary study that provided a
threat model for mobile money applications, interviewed mobile money developers, and presented
results from a high level measurement analysis of 197 applications. Their app analysis provided
insights into download counts, permission use, minimum versions, and use of URLs and third
party libraries in mobile money applications. They also interviewed seven developers from Nigeria,
Kenya, Uganda, Zimbabwe, and Colombia, finding that most developers were aware of security
concerns, but found it challenging to find good sources of information about security or struggled
with budgetary or partner requirements that limited security efforts. These challenges may inform
our technical findings that many vulnerabilities were not corrected after public disclosure.

While focused strictly on mobile money platforms, this article also contributes to the litera-
ture of Android application security measurement. The pioneering work in this space was Taint-
Droid (Enck et al. 2014), a dynamic analysis system that detected private information leakages.
Shortly after, Felt et al. (2011) found that one-third of apps studied held privileges they did not
need, while Chin et al. (2011) found that 60% of apps manually examined were vulnerable to attacks
involving Android Intents. More recently, Fahl et al. (2012) and Egele et al. (2013) use automated
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static analysis to study cryptographic API use in Android, finding respectively that 8% of apps
studied were vulnerable to man-in-the-middle attacks and that 88% of apps make some mistake
using cryptographic libraries. This project is most similar to the work of Enck et al. (2011), who
automatically and manually analyzed 1,100 applications for a broad range of security concerns.

However, prior work does not investigate the security guarantees and the severe consequences
of smart phone application compromise in branchless banking systems. Our work specifically in-
vestigates this open area of research and provides the world’s first detailed security analysis of
mobile money apps. In doing so, we demonstrate the risk to users who rely on these systems for
financial security.

11 CONCLUSIONS

Branchless banking applications have and continue to hold the promise of improving the standard
of living of many in the developing world. By enabling access to a cashless payment infrastructure,
these systems allow residents of such countries to reap the benefits afforded to modern economies
and decrease the physical security risks associated with cash transactions. However, the security
of the applications providing these services has not previously been vetted in a comprehensive or
public fashion. In this article, we perform precisely such an analysis on seven branchless banking
applications, balancing both popularity with geographic representation. Our analysis targets
the registration, login, and transaction portions of the representative applications, and codifies
discovered vulnerabilities using the CWE classification system. We find significant vulnerabilities
in six of the seven applications, which prevent both users and providers from reasoning about
the integrity of transactions. Many of these vulnerabilities remain even one year after responsible
disclosure and press coverage. We then pair these technical findings with the discovery of
fraud liability models that explicitly hold the end user culpable for all fraud. Given the systemic
problems we identify, we argue that dramatic improvements to the security of branchless banking
applications are imperative to protect the mission of these systems.

APPENDIX

Table 5. We found 54 Mobile Money Android Applications Located in 30 Countries

(Continued)
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Table 5. Continued

Highlighted rows represent those applications manually analyzed in this paper. We were unable to obtain two apps

due to Android market restrictions. Mallodroid was unable to analyze the apps marked N/A.

ACM Transactions on Privacy and Security, Vol. 20, No. 3, Article 11. Publication date: August 2017.



Mo(bile) Money, Mo(bile) Problems: Analysis of Branchless Banking Applications 11:29

ACKNOWLEDGMENTS

The authors are grateful to Saili Sahasrabudde and Jared Trinkler for their assistance with this
work. We would also like to thank colleagues at the Florida Institute for Cybersecurity Research
(FICS) at the University of Florida for their help in preparing this work, as well as our anonymous
reviewers for their helpful comments. We gratefully thank PNF Software for an academic discount
on their JEB decompiler. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

David Adrian, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-Bguelin, Paul Zimmermann,

Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J. Alex Halderman, Nadia Heninger, Drew

Springall, and Emmanuel Thom. 2015. Imperfect forward secrecy: How diffie-hellman fails in practice. ACM Press, 5–17.

DOI:http://dx.doi.org/10.1145/2810103.2813707

Airtel TOS. 2015. Airtel Money: Terms and Conditions of Usage. Retrieved from http://www.airtel.in/personal/money/

terms-of-use.

Chaitrali Amrutkar, Patrick Traynor, and Paul van Oorschot. 2015. An empirical evaluation of security indicators in mobile

web browsers. IEEE Transactions on Mobile Computing (TMC) 14, 5 (2015).

Ross Anderson. 1993. Why cryptosystems fail. In Proceedings of the 1st ACM Conference on Computing and Communication

Security. ACM Press, 215–227. DOI:http://dx.doi.org/10.1145/168588.168615

Apktool. 2016. android-apktool: A Tool for Reverse Engineering Android APK Files. Retrieved from https://ibotpeaches.

github.io/Apktool/.

Adam Bates, Joe Pletcher, Tyler Nichols, Braden Hollembaek, Dave Tian, Abdulrahman Alkhelaifi, and Kevin Butler. 2014.

Securing SSL certificate verification through dynamic linking. In Proceedings of the 21st ACM Conference on Computing

and Communication Security (CCS’14).

Nick Berry. 2012. PIN analysis. Retrieved from http://www.datagenetics.com/blog/september32012/.

Bill & Melinda Gates Foundation. 2016. Financial Services for the Poor: Strategy Overview. Retrieved from http://www.

gatesfoundation.org/What-We-Do/Global-Development/Financial-Services-for-the-Poor.

Bouncy Castle. 2014. The Legion of the Bouncy Castle. Retrieved from https://www.bouncycastle.org/.

Bradley Reaves, Jasmine Bowers, Sigmond A. Gorski III, Olabode Anise, Rahul Bobhate, Raymond Cho, Hiranava Das,

Sharique Hussain, Hamza Karachiwala, Nolen Scaife, Byron Wright, Kevin Butler, William Enck, and Patrick Traynor.

2016. *droid: Assessment and evaluation of android application analysis tools. Computing Surveys 49, 3 (Oct. 2016),

55:1–55:30.

Sam Castle, Fahad Pervaiz, Galen Weld, Franziska Roesner, and Richard Anderson. 2016. Let’s talk money: Evaluating the

security challenges of mobile money in the developing world. In Proceedings of the 7th Annual Symposium on Computing

for Development (ACM DEV’16). ACM, New York, NY, Article 4, 10 pages. DOI:http://dx.doi.org/10.1145/3001913.3001919

Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving accuracy and scalability simultaneously in detecting application

clones on android markets. In Proceedings of the 36th International Conference on Software Engineering (ICSE’14). ACM,

New York, NY, 175–186. DOI:http://dx.doi.org/10.1145/2568225.2568286

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011. Analyzing inter-application communication

in android. In Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services (MobiSys’11).

ACM, New York, NY, 239–252. DOI:http://dx.doi.org/10.1145/1999995.2000018

Ming Ki Chong. 2009. Usable Authentication for Mobile Banking. Ph.D. Dissertation. Univ. of Cape Town. Retrieved from

http://pubs.cs.uct.ac.za/archive/00000520/.

Punam Chuhan-Pole and Manka Angwafo. 2011. Mobile payments go viral: M-PESA in Kenya. In Yes, Africa Can: Success

Stories from a Dynamic Continent. World Bank Publications.

Sheila Cobourne, Keith Mayes, and Konstantinos Markantonakis. 2013. Using the smart card web server in secure branch-

less banking. In Network and System Security. Number 7873 in Lecture Notes in Computer Science. Springer, Berlin,

250–263.

Italo Dacosta, Mustaque Ahamad, and Patrick Traynor. 2012. Trust no one else: Detecting MITM attacks against SSL/TLS

without third-parties. In Proceedings of the European Symposium on Research in Computer Security. Springer, 199–216.

Anthony Desnos and Geoffroy Gueguen. 2011. Android: From reversing to decompilation. Proc. of Black Hat Abu

Dhabi. Retrieved from http://media.blackhat.com/bh-ad-11/Desnos/bh-ad-11-DesnosGueguen-Andriod-Reversing_

to_Decompilation_WP.pdf.

ACM Transactions on Privacy and Security, Vol. 20, No. 3, Article 11. Publication date: August 2017.

http://dx.doi.org/10.1145/2810103.2813707
http://www.airtel.in/personal/money/terms-of-use
http://dx.doi.org/10.1145/168588.168615
https://ibotpeaches.github.io/Apktool/
http://www.datagenetics.com/blog/september32012/
http://www.gatesfoundation.org/What-We-Do/Global-Development/Financial-Services-for-the-Poor
https://www.bouncycastle.org/
http://dx.doi.org/10.1145/3001913.3001919
http://dx.doi.org/10.1145/2568225.2568286
http://dx.doi.org/10.1145/1999995.2000018
http://pubs.cs.uct.ac.za/archive/00000520/.
http://media.blackhat.com/bh-ad-11/Desnos/bh-ad-11-DesnosGueguen-Andriod-Reversing_to_Decompilation_WP.pdf.


11:30 B. Reaves et al.

Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. 2013. An empirical study of cryptographic

misuse in android applications. In Proceedings of the 20th ACM Conference on Computing and Communication Security

(CCS’13). ACM, New York, NY, 73–84. DOI:http://dx.doi.org/10.1145/2508859.2516693

William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick

McDaniel, and Anmol N. Sheth. 2014. TaintDroid: An information-flow tracking system for realtime privacy monitoring

on smartphones. ACM Transactions on Computing Systems 32, 2 (June 2014), 5:1–5:29. DOI:http://dx.doi.org/10.1145/

2619091

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. 2011. A study of android application security. In

Proc. 20th USENIX Security Sym. San Francisco, CA. http://www.usenix.org/events/sec11/tech/full_papers/Enck.pdf.

William Enck, Patrick Traynor, Patrick McDaniel, and Thomas La Porta. 2005. Exploiting open functionality in SMS-capable

cellular networks. In Proceedings of the 12th ACM Conference on Computer and Communications Security. ACM, 393–404.

Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgartner, Bernd Freisleben, and Matthew Smith. 2012. Why Eve

and Mallory love android: An analysis of android SSL (in)security. In Proceedings of the 2012 ACM Conference on Com-

puter and Communication Security (CCS’12). ACM, New York, NY, 50–61. DOI:http://dx.doi.org/10.1145/2382196.2382205

Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and Matthew Smith. 2013. Rethinking SSL development in

an appified world. In Proceedings of the 20th ACM Conference on Computer and Communication Security (CCS’13). ACM,

New York, NY, 49–60. DOI:http://dx.doi.org/10.1145/2508859.2516655

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. 2011. Android permissions demystified.

In Proceedings of the 18th ACM Conference on Compter and Communication Security (CCS’11). ACM, New York, NY,

627–638. DOI:http://dx.doi.org/10.1145/2046707.2046779

GCash TOS. 2015. GCash Terms and Conditions. Retrieved from http://www.globe.com.ph/gcash-terms-and-conditions.

Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and Vitaly Shmatikov. 2012. The most danger-

ous code in the world: Validating SSL certificates in non-browser software. In Proc. 2012 ACM Conf. Comp. and Comm.

Security (CCS’12). ACM, New York, NY, 38–49. DOI:http://dx.doi.org/10.1145/2382196.2382204

Google. 2014a. Dashboards—Android Developers. Retrieved from https://developer.android.com/about/dashboards/index.

html.

Google. 2014b. Log—Android Developers. Retrieved from https://developer.android.com/reference/android/util/Log.html.

Google. 2014c. Random—Android Developers. https://developer.android.com/reference/java/util/Random.html. (Nov.

2014).

Google. 2016. App Security Improvement Program. Retrieved from https://developer.android.com/google/play/asi.html.

GSMA. 2014. MMU Deployment Tracker. Retrieved from http://www.gsma.com/mobilefordevelopment/programmes/

mobile-money-for-the-unbanked/insights/tracker.

Andrew Harris, Seymour Goodman, and Patrick Traynor. 2013. Privacy and security concerns associated with mobile

money applications in Africa. Washington Journal of Law, Technology & Arts 8, 3 (2013).

Vaughn Highfield. 2012. More than 60 Percent of Kenyan GDP Came From Mobile Money in June 2012, a New Sur-

vey Shows. Retrieved from http://www.totalpayments.org/2013/03/01/60-cent-kenyan-gdp-mobile-money-june-2012-

survey-shows/.

Internet Security Research Group (ISRG). 2016. Let’s Encrypt. Retrieved from https://letsencrypt.org/.

JEB Decompiler. 2014. JEB Decompiler. Retrieved from http://www.android-decompiler.com/.

Janet Kamana. 2014. M-PESA: How Kenya Took the Lead in Mobile Money. Retrieved from http://www.mobiletransaction.

org/m-pesa-kenya-the-lead-in-mobile-money/.

Gilberto Martins de Almeida. 2013. M-payments in Brazil: Notes on how a country’s background may determine timing

and design of a regulatory model. Washington Journal of Law, Technology & Arts 8, 3 (2013).

mCoin TOS. 2015. mCoin: Terms and Conditions. Retrieved from http://www.mcoin.co.id/syarat-dan-ketentuan.

Christopher Mims. 2013. 31% of Kenya’s GDP is Spent Through Mobile Phones. Retrieved from http://qz.com/57504/

31-of-kenyas-gdp-is-spent-through-mobile-phones/

Money on Mobile TOS. 2015. Money on Mobile Sign-Up: Terms and Conditions. Retrieved from http://www.money-

on-mobile.com/?page_id=930.

mPay TOS. 2015. mPAY: Terms and Conditions. Retrieved from http://www.ais.co.th/mpay/Condition.html.

S. J. Murdoch, S. Drimer, R. Anderson, and M. Bond. 2010. Chip and PIN is broken. In Security and Privacy (SP), 2010 IEEE

Symposium on. 433–446. DOI:http://dx.doi.org/10.1109/SP.2010.33

Baraka W. Nyamtiga, Anael Sam, and Loserian S. Laizer. 2013a. Enhanced security model for mobile banking systems in

Tanzania. Intl. Jour. Tech. Enhancements and Emerging Engineering Research 1, 4 (2013), 4–20.

Baraka W. Nyamtiga, Anael Sam, and Loserian S. Laizer. 2013b. Security perspectives for USSD versus SMS in conducting

mobile transactions: A case study of Tanzania. Intl. Jour. Tech. Enhancements and Emerging Engineering Research 1, 3

(2013), 38–43.

ACM Transactions on Privacy and Security, Vol. 20, No. 3, Article 11. Publication date: August 2017.

http://dx.doi.org/10.1145/2508859.2516693
http://dx.doi.org/10.1145/2619091
http://www.usenix.org/events/sec11/tech/full_papers/Enck.pdf.
http://dx.doi.org/10.1145/2382196.2382205
http://dx.doi.org/10.1145/2508859.2516655
http://dx.doi.org/10.1145/2046707.2046779
http://www.globe.com.ph/gcash-terms-and-conditions
http://dx.doi.org/10.1145/2382196.2382204
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/reference/android/util/Log.html
https://developer.android.com/reference/java/util/Random.html
https://developer.android.com/google/play/asi.html
http://www.gsma.com/mobilefordevelopment/programmes/mobile-money-for-the-unbanked/insights/tracker
http://www.totalpayments.org/2013/03/01/60-cent-kenyan-gdp-mobile-money-june-2012-penalty -@M survey-shows/
https://letsencrypt.org/
http://www.android-decompiler.com/
http://www.mobiletransaction.org/m-pesa-kenya-the-lead-in-mobile-money/
http://www.mcoin.co.id/syarat-dan-ketentuan
http://qz.com/57504/31-of-kenyas-gdp-is-spent-through-mobile-phones/
http://www.money-penalty -@M on-mobile.com/?page_id$=$930
http://www.ais.co.th/mpay/Condition.html
http://dx.doi.org/10.1109/SP.2010.33


Mo(bile) Money, Mo(bile) Problems: Analysis of Branchless Banking Applications 11:31

Josh Ong. 2014. Android Achieved 85% Smartphone Market Share in Q2. http://thenextweb.com/google/2014/07/31/

android-reached-record-85-smartphone-market-share-q2-2014-report/. (July 2014).

Oracle. 2014. Random - Java Platform SE 7. Retrieved from https://docs.oracle.com/javase/7/docs/api/java/util/Random.

html.

Oxigen TOS. 2015. Oxigen Wallet: Terms and Conditions. Retrieved from https://www.oxigenwallet.com/terms-conditions.

Michael Paik. 2010. Stragglers of the herd get eaten: Security concerns for GSM mobile banking applications. In Proceed-

ings of the 11th Workshop on Mobile Computing Systems and Applications (HotMobile’10). ACM, New York, NY, 54–59.

DOI:http://dx.doi.org/10.1145/1734583.1734597

Saurabh Panjwani. 2011. Towards end-to-end security in branchless banking. In Proceedings of the 12th Workshop on Mobile

Computing Systems and Applicatons (HotMobile’11). ACM, New York, NY, 28–33. DOI:http://dx.doi.org/10.1145/2184489.

2184496

Saurabh Panjwani and Edward Cutrell. 2010. Usably secure, low-cost authentication for mobile banking. In Proceedings

of the 6th Symposium Usable Privacy and Security (SOUPS’10). ACM, New York, NY, 4:1–4:12. DOI:http://dx.doi.org/10.

1145/1837110.1837116

PCI DSS. 2016. Data Security Standard—Requirements and Security Assessment Procedures. Retrieved from https://www.

pcisecuritystandards.org/documents/PCI_DSS_v3.pdf.

Claire Penicaud and Arunjay Katakam. 2014. Mobile Financial Services for the Unbanked: State of the Industry 2013. Technical

Report. GSMA.

Qualys. 2014. SSL Server Test. Retrieved from https://www.ssllabs.com/ssltest/.

Bradley Reaves, Nolen Scaife, Adam Bates, Patrick Traynor, and Kevin R. B. Butler. 2015. Mo(bile) money, mo(bile) prob-

lems: Analysis of branchless banking applications in the developing world. In Proceedings of the 24th USENIX Security

Symposium (USENIX Security 15). USENIX Association, Washington, D.C., 17–32.

Bradley Reaves, Nolen Scaife, Dave Tian, Logan Blue, Patrick Traynor, and Kevin R. B. Butler. 2016. Sending out an SMS:

Characterizing the security of the SMS ecosystem with public gateways. In Proceedings of the 2016 IEEE Symposium on

Security and Privacy.

Reserve Bank of India. 2008. Mobile Payment in India—Operative Guidelines for Banks. Technical Report. Reserve Bank of

India.

Reserve Bank of India. 2013. Master Circular - KYC norms, AML standards, CFT, Obligation of banks under PMLA, 2002.

Retrieved from http://rbidocs.rbi.org.in/rdocs/notification/PDFs/94CF010713FL.pdf.

Safaricom. 2014. Relax, you have got M-PESA. Retrieved from http://www.safaricom.co.ke/personal/m-pesa/

m-pesa-services-tariffs/relax-you-have-got-m-pesa.

Ashlesh Sharma, Lakshmi Subramanian, and Dennis Shasha. 2009. Secure branchless banking. In Proceedings of the 3rd

ACM Workshop on Networked Systems for Developing Regions.

Richard Shay, Saranga Komanduri, Adam L. Durity, Phillip (Seyoung) Huh, Michelle L. Mazurek, Sean M. Segreti, Blase Ur,

Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. 2014. Can long passwords be secure and usable? In Proceedings

of the Conference on Human Factors in Comp. Syst. (CHI’14). ACM, New York, NY, 2927–2936. DOI:http://dx.doi.org/10.

1145/2556288.2557377

Smali. 2014. smali: An assembler/disassembler for Android’s dex format. Retrieved from https://code.google.com/p/smali/.

The GSM Association (GSMA). 2016. State of the Industry Report: Mobile Money. Retrieved from http://www.gsma.com/

mobilefordevelopment/wp-content/uploads/2016/04/SOTIR_2015.pdf.

The MITRE Corporation. 2014. CWE - Common Weakness Enumeration. Retrieved from http://cwe.mitre.org/.

Patrick Traynor, Patrick McDaniel, and Thomas La Porta. 2008. Security for Telecommunications Networks. Springer.

Jennifer Valentino-Devries. 2015. Wall Street Journal - Researchers Find Security Flaws in Developing-World

Money Apps. Retrieved from http://blogs.wsj.com/digits/2015/08/11/researchers-find-security-flaws-in-developing-

world-money-apps/.

Zuum TOS. 2015. Zuum: Termos e Condições. Retrieved from http://www.zuum.com.br/institucional/termos.

Received August 2016; revised January 2017; accepted May 2017

ACM Transactions on Privacy and Security, Vol. 20, No. 3, Article 11. Publication date: August 2017.

http://thenextweb.com/google/2014/07/31/android-reached-record-85-smartphone-market-share-q2-2014-report/
https://docs.oracle.com/javase/7/docs/api/java/util/Random.html
https://www.oxigenwallet.com/terms-conditions
http://dx.doi.org/10.1145/1734583.1734597
http://dx.doi.org/10.1145/2184489.2184496
http://dx.doi.org/10.1145/1837110.1837116
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3.pdf
https://www.ssllabs.com/ssltest/
http://rbidocs.rbi.org.in/rdocs/notification/PDFs/94CF010713FL.pdf
http://www.safaricom.co.ke/personal/m-pesa/m-pesa-services-tariffs/relax-you-have-got-m-pesa
http://dx.doi.org/10.1145/2556288.2557377
https://code.google.com/p/smali/
http://www.gsma.com/mobilefordevelopment/wp-content/uploads/2016/04/SOTIR_2015.pdf
http://cwe.mitre.org/
http://blogs.wsj.com/digits/2015/08/11/researchers-find-security-flaws-in-developing-penalty -@M world-money-apps/
http://www.zuum.com.br/institucional/termos

