
Secure and Trustworthy Provenance Collection
for Digital Forensics

Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

Abstract Data provenance refers to the establishment of a chain of custody for in-
formation that can describe its generation and all subsequent modifications that have
led to its current state. Such information can be invaluable for a forensics investiga-
tor. The first step to being able to make use of provenance for forensics purposes is
to be able to ensure that it is collected in a secure and trustworthy fashion. However,
the collection procsss along raises several significnt challenges. In this chapter, we
discuss past approaches to provenance collection from application to operating sys-
tem level, and promote the notion of a provenance monitor to assure the complete
collection of data. We examine two instantiations of the provenance monitor concept
through the Hi-Fi and Linux Provenance Module systems, discussing the details of
their design and implementation to demonstrate the complexisty of collecting full
provenance information. We consider the security of these schemes and raise chal-
lenges that future provenance systems must address to be maximually useful for
practical forensic use.

Department of Computer and Information Science and Engineering
University of Florida, Gainesville, FL, USA, e-mail: {bates,butler}@cise.ufl.edu

Department of Electrical Engineering and Computer Science
Pennsylvania State University, University Park, PA, USA, e-mail: djpohly@cse.psu.edu

1



2 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

1 Introduction

Successful forensics investigations rely on the trustworthiness of data that is re-
trieved. As a result, the ability to retrieve trustworthy logs and other information
that explains where information was generated can be critical to successful inquiries.
Such artifacts go part of the way, but not all of the way, towards answering the fol-
lowing question: how can we be assured that the chain of custody for data from the
time it was originated until it arrived in its current state is both secure and trustwor-
thy?

Data provenance provides a compelling means of providing answers to this chal-
lenging problem. The term provenance comes from the art world, where it refers to
the ability to trace all activities related to an piece of art, in order to establish that
is is genuine. An example of this usage is with Jan van Eyck’s Arnolfini portrait,
currently hanging in the National Gallery of London. The provenance of this cele-
brated portrait can be traced back almost 600 years to its completion in 1432, with
metadata in the form of markings associated with its owners painted on the paint-
ing’s protective shutters helping to establish the hands through which it has passed
over the centuries [23].

More recently, data provenance has become a desired feature in the computing
world. From its initial deployment in the database community [17] to a more re-
cent focus to its proposed use as an operating sytems feature [43], data provenance
provides a broad new capability for reasoning about the genesis and subsequent
modification of data. In contrast to the current computing paradigm where interac-
tions between system components are largely opaque, data provenance allows users
to track, and understand how a piece of data came to exist in its current state. The
realization of provenance-aware systems will fundamentally redefine how comput-
ing systems are secured and monitored, and will provide important new capabilities
to the forensics community. Ensuring its efficacy in a computer system, though, is
an extremely challenging problem, to the extent that the Department of Homeland
Security has included provenance as one of its Hard Problems in Computing [14].
Ensuring that information is collected in a trustworthy fashion is the first problem
that needs to be solved in order to assure the security of provenance. Without ade-
quate protections in place, adversaries can target the collection mechanisms to de-
stroy or tamper with provenance metadata, calling the trustworthiness of data into
question or using it in a malicious fashion.

This book chapter focuses on how to ensure the secure and trustworthy collection
of data provenance within computing systems. We will discuss past approaches to
provenance collection and where and why those fall short, and discuss how taking a
systems security approach to defining trustworthy provenanace collection can pro-
vide a system that fulfills the qualities necessary for a secure implementation. We
will then discuss approaches from the research community that have attempted to
ensure the fine-grained secure collection of provenance, as well as our own work
in this area to provide a platform for deploying secure provenance collection as an
operating system service.



Secure and Trustworthy Provenance Collection for Digital Forensics 3

2 Provenance-Aware Systems

Data provenance provides the ability to describe the history of a data object, includ-
ing the conditions that led to its creation and the actions that delivered it to its present
state. The potential applications for this kind of information are virtually limitless;
provenance is of use in any scenario where a context-sensitive decision needs to be
made about a piece of data. Specifically, provenance can be used to answer a variety
of historical questions about the data it describes. Such questions include, but are
not limited to, “What processes and datasets were used to generate this data?” and
“In what environment was the data produced?” Conversely, provenance can also
answer questions about the successors of a piece of data, such as “What objects on
the system were derived from this object?”

A necessary prerequisite to the use of data provenance is its reliable capture and
management, which is facilitated by provenance-aware software systems. Prove-
nance capture mechanisms can be deployed at various layers of system operation,
including applications, middleware, and operating systems. They can broadly be
grouped into two categories: disclosed and automatic. In disclosed systems, prove-
nance is recorded based on manual annotations created by the operator, while in
automatic systems, software is instrumented to automatically generate and record
lineage information.

2.1 Disclosed Provenance-Aware systems

The earliest efforts in provenance tracking arose from the scientific processing and
database management communities. While the potential use cases for data prove-
nance have broadened in scope over time, early investigators aims were to maintain
virtual data descriptions that would allow them to explain data processing results
and re-constitute those results in the event of their deletion. One of the earliest ef-
forts in this space was Chimera [17], which provided a virtual data management
system that allowed for tracking the derivations of data through computational pro-
cedures. Chimera is made up of a virtual data catalog that represents computation
procedures used to derive data and a virtual data language interpreter for construct-
ing and querying the catalog. It uses transformation procedures (i.e., processes) as
its integral unit; its database is made up of transformations that represent executable
programs and derivations that represent invocations of transformations. All other in-
formation (e.g., input files, output files, execution environment) are a subfield in the
process’ entry.

The Earth Science System Workbench, used for processing satellite imagery, also
offered support for provenance annotations [18], as did the Collaboratory for the
Multi-scale Chemical Sciences [46] and the Kepler system [41]. Specification-based
approaches, which generated data provenance based on process documentation [40]
also appeared in the literature at this time. Chimera and other early systems relied



4 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

on manual annotations or inferences from other metadata as sources for data prove-
nance, and are therefore referred to as disclosed provenance-aware systems.

2.2 Automatic Provenance-Aware Systems

Automatic provenance-aware systems can be further divided into several categories
based on software layer at which provenance collection occurs. We now consider
past proposals for provenance at different operational layers, and identify the op-
portunities and challenges of each approach. We focus in this discusssion on appli-
cations operating system mechanisms to support provenance.

2.2.1 Automatic Provenance in Operating Systems

Capturing data provenance at the operating system layer offers a broad perspective
into system activities, providing insight into all applications running on the host.
Muniswamy-Reddy et al.’s Provenance-Aware Storage System (PASS) instruments
the VFS layer of the Linux kernel to automatically collect, maintain, and provide
search for data provenance [43]. PASS defines provenance as a description of the
execution history that produced a persistent object (file). Provenance records are at-
tribute/value pairs that are referenced by a unique pnode number. PASS provenance
is facilitate a variety of useful tasks, including script generation and document re-
production, detecting system changes, intrusion detection, retrieving compile-time
flags, build debugging, and understanding system dependencies. One limitation of
the PASS system is that the model for provenance collection was fixed, and did not
provide a means of extending the system with additional provenance attributes or
alternate storage models.

Gehani and Tariq present SPADE in response to requests for coarser-grained in-
formation and the the ability to experiment with different provenance attributes,
novel storage and indexing models, and handling provenance from diverse sources
[21]. SPADE is a java-based daemon that offers provenance reporter modules for
Windows, Linux, OSX, and Android. The reporters are based on a variety of meth-
ods of inference, including polling of basic user space utilities (e.g., ps for process
info, lsof for network info), audit log systems (e.g., Window’s ETW, OSX’s BSM),
and interposition via user space filesystems like FUSE. Due to its modular design,
SPADE can be easily extended to support additional provenance streams.

Both the PASS and SPADE systems facilitate provenance collection through ad
hoc instrumentation or polling efforts, making it difficult to provide any assurance
of the completeness of the provenance that they collect. In fact, there are several
examples of how these systems fail to provide adequate tracking for explicit data
flows through a system. As SPADE records provenance in part through periodic
polling of system utilities, there exists the potential for race conditions in which
short-lived processes or messages could be successfully created between polling



Secure and Trustworthy Provenance Collection for Digital Forensics 5

intervals. By observing the VFS layer, PASS provides support for non-persistent
data, such as network sockets which are represented by a system file; however, it
fails to track a variety of forms of interprocess communication, such as signals or
shared memory, which provides a covert channel for communicating applications.

2.2.2 Automatic Provenance in Middleware

The earliest disclosed provenance-aware systems were proposed for middleware,
such as Chimera [17] and the Earth Science System Workbench [18]. Today, au-
tomatic provenance-aware middleware continues to be one of the most widespread
and impactful forms of provenance capability. Tools such as VisTrails [54], which
tracks the provenance of scientific visualizations, have established themselves as
viable platforms in scientific computing comminities. By instrumenting a common
computing platform within a community, such as a database management system or
scientific computing engine, provenance-aware middleware provides easy access to
semantically rich, domain specific provenance metadata.

Propagating lineage information as datasets are fused and transformed is one of
the strongest motivations for provenance capabilities. Chiticariu et al.’s DBNotes
provides a “post-It note” system for relational data in which annotations are propa-
gated based on lineage [12]. DBNotes provides a SQL extension (pSQL) that allows
one to specify how provenance annotations should propagate through a SQL query.
pSQL also allows annotations to be queried inline with other relational data. DB-
Notes also has a visualization feature that demonstrates the journey taken by a piece
of data through various databases and transformation steps. In related work, Hol-
land et al. [26, 42] present PQL, another query model for data provenance provides
a semistructured data and query model for the graph-centric nature of provenance.
By extending the Lowel query language to support bidirectional edge traversal and
more expressive attributes, PQL compares favorably due to alternate models for
provenance querying as relational languages cannot efficiently encode graphs, nor
can tree-based structures like XML.

While both of these systems require users to adopt a new query language, Glavic
and Alonso [22] present PERM (Provenance Extension of the Relational Model),
a system that uses query rewriting to annotate result tuples with provenance infor-
mation, permitting provenance to be queried, stored, and optimized using standard
relational database techniques without impacting normal database operations. Given
a query q, Perm creates q+ that produces the same result as q but extended with ad-
ditional attributes. Through using standard relational models, PERM offers support
for more sophisticated queries than other provenance-aware databases, and outper-
forms the Trio system by at least a factor of 30.



6 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

2.2.3 Automatic Provenance in Applications

Manual instrumentation of applications offers concise and semantically rich data
provenance. Several development libraries have appeared in the literature to aid in
instrumentation efforts, providing a standardized API through which to emit data
provenance. Muniswamy-Reddy et al.’s Disclosed Provenance API (DPAPI) [42]
and Macko and Seltzer’s Core Provenance Library (CPL) [37] provide portable,
multi-lingual libraries that application programmers could use to disclose prove-
nance by defining provenance objects and describing the flows between those ob-
jects. CPL offers the advantages of avoiding version disconnect between files that
are seemingly distinct to the operating system but are actually ancestors, integration
between different provenance-aware applications due to a look-up function in the
API, and reconciling different notions of provenance in a unified format.

DPAPI is a component of the PASSv2 project [42]. It’s intended purpose is to
create provenance-aware applications whose provenance can be layered on top of in-
formation collected by the PASS system, allowing system operators to reason holis-
tically about activities at multiple system layers. Several exemplar applications for
provenance layering as part of this effort: Kepler, Lynx, and a set of general-purpose
Python wrappers. Similarly, the SPADE system offers support for provenance layer-
ing by exposing a named pipe and generic domain-specific language for application
layer provenance disclosure [21].

Other work has sought out alternate deployment model to create provenance-
aware applications at a lower cost and without developer cooperation. Hassan et al.
present Sprov, a modified version of the stdio library that captures provenance for
file I/O system calls at the application layer. By replacing the glibc library with
the modified version, Sprov is able to record file provenance for all dynamically
linked applications on the system. This system also provides integrity for prove-
nance records through the introduction of a tamper-evident provenance chain prim-
itive. By cryptographically binding time-ordered sequences of provenance records
together for a given document, Sprov is able to prevent undetected rewrites of the
document’s history.

Recent efforts have also attempted to reconstitute application workflow prove-
nance through analysis of system layer audit logs, requiring only minimally in-
vasive and automated transformation of the monitored application. A significant
consequence of provenance tracking at the operating system layer is dependency
explosion – for long-lived processes, each new output from an application must
conservatively be assumed to have been derived from all prior inputs, creating false
provenance. The BEEP systems resolves this problem through analysis and trans-
formation of binary executables [32]. Leveraging the insight that most long-lived
processes are made up of an initialization phase, main work loop, and tear-down
phase, BEEP procedurally identifies the main work loop in order to decompose the
process into autonomous units of work. After this execution partitioning (EP) step,
the system audit log can then be analyzed to build causal provenance graphs for
the monitored applications. Ma et al. go on to adapt these techniques Windows and
other proprietary software [35], where EP can be performed by perform regular ex-



Secure and Trustworthy Provenance Collection for Digital Forensics 7

pression analysis of audit logs in order to identify autonomous units of work. The
LogGC system extends BEEP by introducing a garbage collection filtering mecha-
nism to improve the forensic clarity of the causal graphs [33]; for example, if a pro-
cess creates and makes use of a short-lived temporary file that no other process ever
reads, this node contains no semantic value in the causal graph, and can therefore be
pruned. These techniques should be able to be applied in tandem with Chapman et
al’s provenance factorization techniques that find common subtrees and manipulate
them to reduce the provenance size [11]. Although these systems do not modify the
operating system, by operating at the system call or audit logs levels, Sprov, LogGC,
and BEEP provide provenance at a similar granularity to that of provenance-aware
operating systems; they offer only limited insight into application layer semantics.



8 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

3 Ensuring the Trustworthiness of Provenance

Data provenance has proven to be of tremendous value in addressing a variety of
security challenges. Provenance is most commonly employed as a forensic tool for
performing offline event attribution. Pohly et al. [48], Ma et al. [36], and Lee et
al. [32, 33] all demonstrate that their provenance-aware systems can be used to di-
agnose system intrusions such as malware and data exfiltration. Jones et al. [28]
propose a technique to use provenance to aid in determining potential sources of in-
formation leaks. When a removable storage device or network connection is opened
by a provenance-aware host, a “ghost object” is created representing the device.
Files which are read by the user during the session are added as inputs to the ghost
object. The ghost object is annotated with information to make it later identifiable,
including device ID, user ID, process ID, and remote network information. If a leak
occurs, the ghost objects (i.e., ”transient provenance”) can be used to limit the list
of potential culprits.

In other work, data provenance has been shown to be a promising means of en-
forcing and verifying the realtime security of computer systems. Provenance-based
access control schemes (PBAC) have been presented that leverage richer contextual
information than traditional MAC labels [44, 45, 47]. By inspecting the ancestry of
a data object, it is possibly to dynamically infer its present security context before
applying an access control rule. A provenance-based approach provides a general
method for handling arbitrary data fusions, obviating the need to exhaustively enu-
merate transitions between security contexts. Provenance has similarly been con-
sidered in mechanisms for facilitating regulatory compliance. Aldeco-Pérez and
Moreau present a methodology for incorporating provenance into applications dur-
ing their design such that they satisfy the auditing requirements of the UK Data
Protection Act [1]. Bates et al. consider the challenges of managing data prove-
nance between cloud deployments [4], and present a general distributed mechanism
for the enforcement of regulatory policies such as ITAR [60] and HIPAA [10].

3.1 Security Challenges to Provenance Collection

Unfortunately, while the above work has shown that provenance is an invalu-
able capability when securing systems, less attention has been given to securing
provenance-aware systems. Provenance itself is a ripe attack vector; adversaries may
seek to tamper with provenance to hide evidence of their misdeeds, or to subvert an-
other system component that uses provenance as an input. In light of this realization,
it becomes clear that the integrity, authenticity, and completeness of provenance
must be guaranteed before it can be put to use.

When provenance collection occurs in user-space, either through software or
middleware, an implicit decision is made to fully trust user space applications. How-
ever, in a malicious environment, there is likely to be exploitable software bugs in
provenance-aware applications that handle untrusted inputs. An attacker in control



Secure and Trustworthy Provenance Collection for Digital Forensics 9

of a compromised application could instruct it to disclose false provenance about its
activities, or simply disable the mechanism responsible for provenance collection
altogether. Examples of such vulnerabilities abound in the systems surveyed above.
An attacker with root privilege could terminate the SPADE collection daemon [21]
or modify environment variables to prevent Sprov from being linked [24]. In spite
of the fact that BEEP and LogGC are intended to aid in Advanced Persistent Threat
(APT) detection, a compromised application could violate BEEP’s EP assumptions
in order to cast doubt onto other system users [32, 33]. Due to the confinement prob-
lem that persists in commodity operating systems [31], extraordinary lengths would
need to be taken to harden these systems from attack. As a result, the provenance
collected by these mechanisms is only suitable for benign operating environments.

Capturing data provenance within the operating system is a more promising di-
rection for secure data provenance under a realistic threat model. While PASS was
designed for benign environments [8], its approach of instrumenting the kernel for
provenance collection creates an opportunity to insulate the provenance capture
agent from the dangers of user space. Hardening the kernel against attack, while a
difficult problem, can be achieved through use of Mandatory Access Control (MAC)
mechanisms and other trusted computing techniques. Unfortunately, as PASS in-
struments the VFS layer [43], it is unable to monitor a variety of explicit data flows
within the system, such as shared memory and other forms of interprocess commu-
nication. Moreover, PASSv2, which supports layered provenance, does not have a
defense against the untrustworthy provenance-aware applications discussed above.
The efficient ProTracer system suffers from many of the same problems. While it
records provenance outside of the file system, its instrumentation of the kernel is ad
hoc and unverified, making it possible that explicit data flows are left unmonitored
[36]. ProTracer also places trust in user space applications during a training phase
that provides EP; like BEEP, this assumption could be violated by an active attacker,
injecting uncertainty into the provenance record.

In response to these issues, and to facilitate data provenance’s use in other
security-critical tasks, concurrent work in 2010 began to advocate for the union
of data provenance and trusted computing. Lyle and Martin [34] argue that trusted
computing is useful and immediately applicable to the provenance domain. They
sketch a service-oriented architecture that uses Trusted Platform Module (TPM) at-
testations to track the provenance of jobs in a smart grid. When a node receives
a job, it hashes the job into one of the TPM’s Platform Configuration Registers
(PCRs) and extends the PCR with the hased result upon finishing the job. It then
sends a full attestation up to and including the job result to a provenance store. This
allows the grid to later produce a non-repudiable assertion of the software and hard-
ware stack that produced the result. However, Lyle and Martin’s proposal did not
describe a complete provenance-aware operating system, as provenance proofs did
not describe configuration files, environment variables, generated code, and load
information, nor can this system explain who accessed a piece of data.



10 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

3.2 The Provenance Monitor Concept

To address the challenges discussed above, McDaniel et al. [38] developed the con-
cept of a provenance monitor, where provenance authorities accept host-level prove-
nance data from validated monitors to assemble a trustworthy provenance record.
Subsequent users of the data obtain a provenance record that identifies not only the
inputs, systems, and applications leading to a data item, but also evidence of the
identity and validity of the recording instruments that observed its evolution. At the
host level, the provenance monitor acts as the recording instrument that observes
the operation of a system and securely records each data manipulation. The concept
for a provenance monitor is based on the reference monitor proposed by Anderson
(cite), which has become a cornerstone for evaluating systems security. The two
concepts share the following three fundametal properties:

The host level provenance monitor should enforce the classic reference monitor
guarantees of complete mediation of relevant operations, tamper-proofness of the
monitor itself, and basic verification of correct operation. For the purpose of the
provenance monitor, we define these as follows.

• Complete Mediation. A provenance monitor should mediate all provenance-
relevant operations, whatever these may be for a given application. In other
words, there should be no way by which the provenance monitor can be bypassed
if an event is provenance-sensitive.

• Tamperproof. The provenance monitor must be isolated from the subjects op-
erating on provenance-enhanced data, e.g. the OS kernel or storage device, and
there should be no means by which the monitor can be modified or disabled by
the activities of users on a system.

• bf Verifiable. Finally, the provenance monitor should be designed to allow for
simple verification of its behavior, and optimally should be subject to formal
verification to assure its trustworthy operation.

The provenance monitor provides powerful guarantees for the secure and trust-
worthy collection of provenance. However, while the idea is seeminly simple in
concept, its execution requires considerable design and implementation considera-
tions. As we have seen above, a large amount of provenance related proposals, while
pushing forth novel functionality and advancing the state of research, do not pass
the provenance monitor criteria. Complete mediation and tamperproofness cannot
be guaranteed if the mechanisms used to collect provenance are subject to compro-
mise, and collecting sufficiently fine-grained provenance to ensure complete medi-
ation is a challenge unaddressed by other systems discussed. The next two sections
discuss recent attempts to satisfy the provenance monitor concept and detail the
challenges and design decisions made to assure a practical and functional collection
system.



Secure and Trustworthy Provenance Collection for Digital Forensics 11

4 High-Fidelity Whole Systems Provenance

As we described in the previous section, for a data provenance system to provide the
holistic view of system operation required for such forensic applications, it must be
complete and faithful to actual events. This property, which we call “fidelity,” is nec-
essary for drawing valid conclusions about system security. A missing entry in the
provenance record could sever an important information flow, while a spurious en-
try could falsely implicate an innocuous process. The provenance monitor concept
proides a strong conceptual framework for achieving trusttworthy proenance col-
lection. In particular, this mechanism must provide complete mediation for events
which should appear in the record.

Forensic investigation requires a definition of provenance which is broader than
just file metadata. What is needed is a record of whole-system provenance which re-
tains actions of processes, IPC mechanisms, and even the kernel. These “transient”
system objects can be meaningful even without being an ancestor of any “persis-
tent” object. The command-and-control daemon on Alice’s server, for example, was
significant because it was a descendant of the compromised process. If the prove-
nance system had deemed it unworthy of inclusion in the record, she could not have
traced the outgoing connections to the compromise.

To address these issues, Pohly et al. developed the Hi-Fi provenance system, de-
signed to collect high-fidelity whole-system provenance. Hi-Fi was the first prove-
nance system to collect a complete provenance record from early kernel initializa-
tion through system shutdown. Unlike existing provenance systems, it accounts for
all kernel actions as well as application actions. Hi-Fi also collects socket prove-
nance, creating a system-level provenance record that spans multiple hosts.

4.1 Design of Hi-Fi

Hi-Fi consists of three components: the provenance collector, the provenance log,
and the provenance handler. An important difference between Hi-Fi and previous
work is that rather than collecting events at the file system level, Hi-Fi ensures com-
plete mediation by collecting events as a Linux Security Module (LSM) (cite). Be-
cause the collector is an LSM, it resides below the application layer in the operating
system’s kernel space, and is notified whenever a kernel object access is about to
take place. When invoked, the collector constructs an entry describing the action
and writes it to the provenance log. The log is a buffer which presents these en-
tries to userspace as a file. The provenance handler can then access this file using
the standard file API, process it, and store the provenance record. The handler used
in our experiments simply copies the log data to a file on disk, but it is possible
to implement a custom handler for any purpose, such as post-processing, graphical
analysis, or storage on a remote host.

Such a construction allows for a far more robust adversarial model. Hi-Fi main-
tains the fidelity of provenance collection regardless of any compromise of the OS



12 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

user space by an adversary. This is a strictly stronger guarantee than those provided
by any previous system-level provenance collection system. Compromises are pos-
sible against the kernel, but other techniques for protecting kernel integrity, includ-
ing disk-level versioning [57] or a strong write-once read-many (WORM) storage
system [55], can mitigate the effects of such compromises. Because provenance
never changes after being written, a storage system with strong WORM guarantees
is particularly well-suited to this task. For socket provenance, Hi-Fi guarantees that
incoming data will be recorded accurately; to prevent on-the-wire tampering by an
adversary, standard end-to-end protection such as IPsec should be used.

The responsibility of the provenance handler is to interpret, process, and store
the provenance data after it is collected, and it should be flexible enough to support
different needs. Hi-Fi decouples provenance handling from th collection process,
allowing the handler to be implemented according to the system’s needs.

For the purposes of recording provenance, each object which can appear in the
log must be assigned an identifier which is unique for the lifetime of that object.
Some objects, such as inodes, are already assigned a suitable identifier by the kernel.
Others, such as sockets, require special treatment. For the rest, Hi-Fi generates a
provid, a small integer which is reserved for the object until it is destroyed. These
provids are managed in the same way as process identifiers to ensure that two objects
cannot simultaneously have the same provid.

4.2 Handling of System-Level Objects

Collecting system-level provenance requires a clear model of system-level objects.
For each object, Hi-Fi must first describe how data flows into, out of, and through
it. Next, the LSM hooks for mediating data-manipulating objects must be identified
(as listed in Table 1), or new hooks are placed if existing ones are insufficient.

Each entry in the provenance log describes a single action on a kernel object.
This includes the type of action, the subject, the object, and any appropriate context.

The data-flow model includes transferring data between multiple systems or mul-
tiple boots of a system. Hi-fi must therefore identify each boot separately. To ensure
that these identifiers do not collide, a random UUID is created at boot time, which
is written to the provenance log so that subsequent events can be associated with the
system on which they occur.

Within a Linux system, the only actors are processes (including threads), and the
kernel. These actors store and manipulate data in their respective address spaces, and
we treat them as black boxes for the purpose of provenance collection. Most data
flows between processes use one of the objects described in subsequent sections.
However, several actions are specific to processes: forking, program execution, and
changing subjective credentials.

Since LSM is designed to include kernel actions, it does not represent actors us-
ing a PID or task_struct structure. Instead, LSM hooks receive a cred struc-
ture, which holds the user and group credentials associated with a process or kernel



Secure and Trustworthy Provenance Collection for Digital Forensics 13

Kernel object LSM hook

Inode inode_init_security
inode_free_security
inode_link
inode_unlink
inode_rename
inode_setattr
inode_readlink
inode_permission

Open file file_mmap
file_permission

Program bprm_check_security
bprm_committing_creds

Credential cred_prepare
cred_free
cred_transfer
task_fix_setuid

Socket socket_sendmsg
socket_post_recvmsg
socket_sock_rcv_skb
socket_dgram_append
socket_dgram_post_recv
unix_may_send

Message queue msg_queue_msgsnd
msg_queue_msgrcv

Shared memory shm_shmat

Table 1 LSM hooks used to collect provenance in Hi-Fi.

action. Whenever a process is forked or new credentials are applied, a new creden-
tial structure is created, allowing us to use these structures to represent individual
system actors. As there is no identifier associated with these cred structures, we
generate a provid to identify them.

Regular files are the simplest and most common means of storing data and shar-
ing it between processes. Data enters a file when a process writes to it, and a copy
of this data leaves the file when a process reads from it. Both reads and writes are
mediated by a single LSM hook, which identifies the the actor, the open file de-
scriptor, and whether the action is a read or a write. Logging file operations is then
straightforward.

Choosing identifiers for files, however, requires considering that files differ from
other system objects in that they are persistent, not only across reboots of a single
system, but also across systems (like a file on a portable USB drive). Because of this,
it must be possible to uniquely identify a file independent of any running system. In
this case, already-existing identifiers can be used rather than generating new ones.
Each file has an inode number which is unique within its filesystem, which can
be combined with a UUID that identifies the filesystem itself to obtain a suitable
identifier that will not change for the lifetime of the file. UUIDs are generated for
most filesystems at creation.



14 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

Files can also be mapped into one or more processes’ address spaces, where they
are used directly through memory accesses. This differs significantly from normal
reading and writing in that the kernel does not mediate accesses once the mapping is
established. Hi-Fi only records the mapping when it occurs, along with the requested
access mode (read, write, or both). This does not affect the notion of complete me-
diation if it is assumed that flows via memory-mapped files take place whenever
possible.

Shared memory segments are managed and interpreted in the same way. POSIX
shared memory is implemented using memory mapping, so it behaves as described
above. XSI shared memory, though managed using different system calls and me-
diated by a different LSM hook, also behaves the same way, so our model treats
them identically. In fact, since shared memory segments are implemented as files
in a temporary filesystem, their identifiers can be chosen in the same way as file
identifiers.

The remaining objects have stream or message semantics, and they are accessed
sequentially. In these objects, data is stored in a queue by the writer and retrieved
by the reader. The simplest such object is the pipe, or FIFO. Pipes have stream
semantics and, like files, they are accessed using the read and write system calls.
Since a pipe can have multiple writers or readers, it cannot be directly represented
as a flow from one process to another. Instead, flow is split into two parts, modeling
the data queue as an independent file-like object. In this way, a pipe behaves like
a sequentially-accessed regular file. In fact, since named pipes are inodes within a
regular filesystem, and unnamed pipes are inodes in the kernel’s “pipefs” pseudo-
filesystem, pipe identifiers can be chosed similarly to files.

Message queues are similar to pipes, with two major semantic differences: the
data is organized into discrete messages instead of a single stream, and these mes-
sages can be delivered in a different order than that in which they are sent. However,
because LSM handles messages individually, a unique identifier can be created for
each, allowing reliable idenfitication of which process receives the message regard-
less of the order in which the messages are dequeued. Since individual messages
have no natural identifier, a provid is generated for each.

Sockets are the most complex form of inter-process communication handled by
Hi-Fi but can be modeled very simply. As with pipes, a socket’s receive queue can
be represented an intermediary file between the sender and receiver. Sending data
merely requires writing to this queue, and receiving data is reading from it. The
details of network transfer are hidden by the socket abstraction. Stream sockets pro-
vide the simplest semantics with respect to data flow: they behave identically to
pipes. Since stream sockets are necessarily connection-mode, all of the data sent
over a stream socket will arrive in the same receive queue. Message-oriented sock-
ets, on the other hand, do not necessarily have the same guarantees. They may be
connection-mode or connectionless, reliable or unreliable, ordered or unordered.
Each packet therefore needs a separate identifier, since it is unclear at which end-
point the message will arrive.

Socket identifiers must be chosen carefully. An identifier must never be re-used
since since a datagram can have an arbitrarily long lifetime. The identifier should



Secure and Trustworthy Provenance Collection for Digital Forensics 15

also be associated with the originating host. Associating messages with a per-
boot UUID addresses these requirements. By combining this UUID with an atomic
counter, a sufficiently large number of identifiers can be generated.

4.3 Hi-Fi Implementation

Provenance Logging. As noted in Section 2, provenance collection has been noted
to generate a large volume of data. Because of this, an efficient and reliable mecha-
nism for making large quantities of kernel data available to user space is necessary.
Other systems have accomplished this by using an expanded printk buffer [52],
writing directly to on-disk log files [42], or using FUSE [56]. Each of these ap-
proaches has drawbacks, so Hi-Fi instead uses a Linux kernel object known as a
relay, which is designed specifically to address this problem [63].

A relay is a kernel ring buffer made up of a set of preallocated sub-buffers. Once
the relay has been initialized, the collector writes provenance data to it using the
relay_write function. This data will appear in userspace as a regular file, which
can be read by the provenance handler. Since the relay is backed by a buffer, it
retains provenance data even when the handler is not running, as is the case during
boot, or if the handler crashes and must be restarted. Since the number and size of the
sub-buffers in the relay are specified when it is created, the relay has a fixed size.
Although the collector can act accordingly if it is about to overwrite provenance
which has not yet been processed by the handler, a better solution is allowing the
relay’s size parameters to be specified at boot time.
Early Boot Provenance. The Linux kernel’s boot-time initialization process con-
sists of setting up a number of subsystems in sequence. One of these subsystems
is the VFS subsystem, which is responsible for managing filesystem operations and
the kernel’s in-memory filesystem caches. These caches are allocated as a part of
VFS initialization. They are then used to cache filesystem information from disk, as
well as to implement memory-backed “pseudo-filesystems” such as those used for
pipes, anonymous memory mappings, temporary files, and relays.

The security subsystem, which loads and registers an LSM, is another part of
this start-up sequence. This subsystem is initialized as early as possible, so that boot
events are also subject to LSM mediation. In fact, the LSM is initialized before the
VFS, which has a peculiar consequence for the relay we use to implement the prove-
nance log. Since filesystem caches have not yet been allocated, the relay cannot be
created when the LSM is initialized, which violated Hi-Fi’s goal of fidelity. In re-
sponse, Hi-Fi separates relay creation from the rest of the module’s initialization
and registers it as a callback in the kernel’s generic initcall system. This allows
it to be delayed until after the core subsystems such as VFS have been initialized.
In the meantime, provenance data is stored in a small temporary buffer. Inspection
of this early boot provenance reveals that a one-kilobyte buffer is sufficiently large
to hold the provenance generated by the kernel during this period. Once the relay is
created, temporary boot-provenance buffer is flushed of its contents and freed.



16 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

OS Integration. One important aspect of Hi-Fi’s design is that the provenance han-
dler must be kept running to consume provenance data as it is written to the log.
Since the relay is backed by a buffer, it can retain a certain amount of data if the
handler is inactive or happens to crash. It is important, though, that the handler is
restarted in this case. Fortunately, this is a feature provided by the operating system’s
init process. By editing the configuration in /etc/inittab, we can specify
that the handler should be started automatically at boot, as well as respawned if it
should ever crash.

Provenance must also be collected and retained for as much of the operating
system’s shutdown process as possible. At shutdown time, the init process takes
control of the system and executes a series of actions from a shutdown script. This
script asks processes to terminate, forcefully terminates those which do not exit
gracefully, unmounts filesystems, and eventually powers the system off. Since the
provenance handler is a regular user space process, it is subject to this shutdown
procedure as well. However, there is no particular order in which processes are
terminated during the shutdown sequence, so it is possible that another process may
outlive the handler and perform actions which generate provenance data.

In response, Hi-Fi handles the shutdown process similarly to a system crash. The
provenance handler must be restarted, and this is accomplished by modifying the
shutdown script to re-execute the handler after all other processes have been ter-
minated before filesystems are unmounted. This special case requires a “one-shot”
mode in the handler which, instead of forking to the background, exits after han-
dling the data currently in the log. This allows it to handle any remaining shutdown
provenance, then returns control to init to complete the shutdown process.
Bootstrapping Filesystem Provenance. Intuitively, a complete provenance record
contains enough information to recreate the structure of an entire filesystem. This
requires three things: a list of inodes, filesystem metadata for each inode, and a
list of hard links (filenames) for each inode. Hi-Fi includes a hook corresponding
to each of these items, to ensure all information appears in the provenance record
starting from an empty filesystem. However, this is difficult to do in practice, as
items may have been used elsewhere or provenance may be collected on an ex-
isting, populated filesystem. Furthermore, it is actually impossible to start with an
empty filesystem. Without a root inode, which is created by the corresponding mkfs
program, a filesystem cannot even be mounted. Unfortunately, mkfs does this by
writing directly to a block device file, which does not generate the expected prove-
nance data.

Therefore, provenance must be bootstrapped on a populated filesystem. To have
a complete record for each file, a creation event for any pre-existing inodes must be
generated. Hi-Fi implements a utility called pbang (for “provenance Big Bang”)
which does this by traversing the filesystem tree. For each new inode it encounters,
it outputs an allocation entry for the inode, a metadata entry containing its attributes,
and a link entry containing its filename and directory. For previously encountered
inodes, it only outputs a new link entry. All of these entries are written to a file to
complete the provenance record. A new filesystem is normally created using mkfs,
then made provenance-aware by executing pbang immediately afterward.



Secure and Trustworthy Provenance Collection for Digital Forensics 17

Opaque Provenance. Early versions of Hi-Fi generated continuous streams of
provenance even when no data was to be collected. Inspection of the provenance
record showed that this data described the actions of the provenance handler it-
self. The handler would call the read function to retrieve data from the prove-
nance log, which then triggered the file_permission LSM hook. The collector
would record this action in the log, where the handler would again read it, trigger-
ing file_permission, and so on, creating a large amount of “feedback” in the
provenance record. While technically correct behavior, this floods the provenance
record with data which does not provide any additional insight into the system’s
operation. One option for solving this problem is to make the handler completely
exempt from provenance collection. However, this could interfere with filesystem
reconstruction. Instead, the handler is provenance-opaque, treated as a black box
which only generates provenance data if it makes any significant changes to the
filesystem.

To achieve this Hi-Fi informs the LSM which process is the provenance han-
dler, by leveraging the LSM framework’s integration with extended filesystem at-
tributes. The provenance handler program is identified by setting an attribute called
security.hifi. The “security” attribute namespace, which is reserved for at-
tributes used by security modules, is protected from tampering by malicious users.
When the program is executed, the bprm_check_security hook examines this
property for the value “opaque” and sets a flag in the process’s credentials indicat-
ing that it should be treated accordingly. In order to allow the handler to create new
processes without reintroducing the original problem—for instance, if the handler is
a shell script—this flag is propagated to any new credentials that the process creates.
Socket Provenance. Network socket behavior is designed to be both transparent and
incrementally deployable. To allow interoperability with existing non-provenanced
hosts, packet identifiers are placed in the IP Options header field. Two Netfilter
hooks process packets at the network layer. The outgoing hook labels each packet
with the correct identifier just before it encounters a routing decision, and the in-
coming hook reads this label just after the receiver decides the packet should be
handled locally. Note that even packets sent to the loopback address will encounter
both of these hooks.

In designing the log entries for socket provenance, Hi-Fi aims to make the re-
construction of information flows from multiple system logs as simple as possible.
When the sender and receiver are on the same host, these entries should behave the
same as reads and writes. When they are on different hosts, the only added require-
ment should be a partial ordering placing each send before all of its correspond-
ing receives. Lamport clocks [30] would satisfy this requirement. However, the
socket_recvmsg hook, which was designed for access control, executes before
a process attempts to receive a message. This may occur before the corresponding
socket_sendmsg hook is executed. To solve this, a socket_post_recvmsg
hook is placed after the message arrives and before it is returned to the receiver; this
hook generates the entry for receiving a message.

Support for TCP and UDP sockets is necessary to demonstrate provenance
for both connection-mode and connectionless sockets, as well as both stream and



18 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

message-oriented sockets. Support for the other protocols and pseudo-protocols in
the Linux IP stack, such as SCTP, ping, and raw sockets, can be implemented using
similar techniques. For example, SCTP is a sequential packet protocol, which has
connection-mode and message semantics.
TCP Sockets. TCP and other connection-mode sockets are complicated in that a
connection involves three different sockets: the client socket, the listening server
socket, and the server socket for an accepted connection. The first two are created in
the same way as any other socket on the system: using the socket function, which
calls the socket_create and socket_post_create LSM hooks. However,
sockets for an accepted connection on the server side are created by a different se-
quence of events. When a listening socket receives a connection request, it creates a
“mini-socket” instead of a full socket to handle the request. If the client completes
the handshake, a new child socket is cloned from the listening socket, and the rele-
vant information from the mini-socket (including our IP options) is copied into the
child. In terms of LSM hooks, the inet_conn_request hook is called when a
mini-socket is created, and the inet_csk_clone hook is called when it is con-
verted into a full socket. On the client side, the inet_conn_established hook
is called when the SYN+ACK packet is received from the server.

Hi-Fi must treat the TCP handshake with care, since there are two different sock-
ets participating on the server side. A unique identifier is created for the mini-socket
in the inet_conn_request hook, and this identifier is later copied directly into
the child socket. The client must then be certain to remember the correct identifier,
namely, the one associated with the child socket. The first packet that the client re-
ceives (the SYN+ACK) will carry the IP options from the listening parent socket.
To keep this from overriding the child socket, the inet_conn_established
hook clears the saved identifier so that it is later replaced by the correct one.
UDP Sockets. Since UDP sockets are connectionless, we an LSM hook must assign
a different identifier to each datagram. In addition, this hook must run in process
context to record the identifier of the process which is sending or receiving. The
only existing LSM socket hook with datagram granularity is the sock_rcv_skb
hook, but it is run as part of an interrupt when a datagram arrives, not in process
context. The remaining LSM hooks are placed with socket granularity; therefore,
two additional hooks are placed to mediate datagram communication. If the file
descriptor of the receiving socket is shared between processes, they can all receive
the same datagram by using the MSG_PEEK flag. In fact, multiple processes can
also contribute data when sending a single datagram by using the MSG_MORE flag
or the UDP_CORK socket option. Because of this, placing send and receive hooks
for UDP is a very subtle task.

Since each datagram is considered to be an independent entity, the crucial points
to mediate are the addition of data to the datagram and the reading of data from
it. The Linux IP implementation includes a function which is called from pro-
cess context to append data to an outgoing socket buffer. This function is called
each time a process adds data to a corked datagram, as well as in the normal
case where a single process constructs a datagram and immediately sends it. This
makes it an ideal candidate for the placement of the send hook, which we call



Secure and Trustworthy Provenance Collection for Digital Forensics 19

socket_dgram_append. Since this hook is placed in network-layer code, it can
be applied to any message-oriented protocol and not just UDP.

The receive hook is placed in protocol-agnostic code, for similar flexibility. The
core networking code provides a function which retrieves the next datagram from
a socket’s receive queue. UDP and other message-oriented protocols use this func-
tion when receiving, and it is called once for each process that receives a given
datagram. This is an ideal location for the message-oriented receive hook, so the
socket_dgram_post_recv hook is placed in this function.

4.4 Limitations of Hi-Fi

Hi-Fi represents a significant step forward in provenance collection, being the first
system to consider design with regard to the provenance monitor concept. The com-
plexity of design and implmentation attest to the goals of complete mediation of
provenance. However, it fails to address other security challengs idenfified in this
chapter.

Hi-Fi does not completely satisfy the provenance monitor concept; enabling Hi-
Fi blocks the installation of other LSM’s, such as SELinux or Tomoyo, effectively
preventing the installation of a mandatory access control (MAC) policy that could
otherwise be used to protect the kernel. This leaves the entire system, including
Hi-Fi’s trusted computing base, vulnerable to attack, and Hi-Fi is therefore not tam-
perproof. Hi-Fi is also vulnerable to network attacks. Hi-Fi embeds an identifier into
each IP packet transmitted by the host, which the recipient host to later use the iden-
tify to query the sender for the provenance of the packet. However, because these
identifiers are not cryptographically secured, an attacker in the network can strip
the provenance identifiers off of packets in transit, violating the forensic validity of
Hi-Fi’s provenance in distributed environments. Finally, Hi-Fi does not provide sup-
port for provenance-aware applications. Provenance layering is vital to obtaining a
comprehensive view of system activity; however, rather than providing an insecure
disclosure mechanism like PASSv2 [42], Hi-Fi does not offer layering support at
all, meaning that its provenance is not complete in its observations of relevant oper-
ations.



20 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

5 Linux Provenance Modules

As we have shown in this chapter, the application of data provenance is presently of
enormous interest at different scopes and levels in a variety of disparate communi-
ties including scientific data processing, databases, software development, storage
[52, 43], operating systems [48], access controls [44, 47], and distributed systems
[4, 65, 67]. In spite of many proposed models and frameworks, mainstream operat-
ing systems still lack support for provenance collection and reporting. This may be
due to the fact that the community has yet to reach a consensus on how to best proto-
type new provenance proposals, leading to redundant efforts, slower development,
and a lack of adoptability. Moreover, each of these proposals has conceptualized
provenance in different ways, indicating that a one-size-fits-all solution to prove-
nance collection is unlikely to meet the needs of all of these audiences

Exacerbating this problem is that, due to a lack of better alternatives, researchers
often choose to implement their provenance-aware systems by overloading other
system components [43, 48]. Unfortunately, this introduces further security and in-
teroperability problems; in order to enable provenance-aware systems, users cur-
rently need to disable their MAC policy [48], instrument applications [24, 65], gam-
ble on experimental storage formats [43], or sacrifice other critical system function-
ality. These issues point to a pressing need for a dedicated platform for provenance
development.

The Linux Provenance Modules (LPM) project [5] is an attempt to unify the
operational needs of the disparate provenance communities through the design and
implementation of a generalized framework for the development of automated,
whole-system provenance collection on the Linux operating system. LPM extends
and generalizes the Hi-Fi approach to kernel layer provenance collection with con-
sideration for a variety of automated provenance systems that have been proposed
in the literature. The framework is designed in such a way to allow for experimenta-
tion with new provenance collection mechanisms, and permits interoperability with
other security mechanisms.

5.1 Augmenting Whole-System Provenance

The LPM project provides an explicit definition for the term whole-system prove-
nance introduced in the Hi-Fi work. that is broad enough to accommodate the needs
of a variety of existing provenance projects. To arrive at a definition, four past pro-
posals were inspected that collect broadly scoped provenance: SPADE [21], Lin-
eageFS [52], PASS [43], and Hi-Fi [48]. SPADE provenance is structured around
primitive operations of system activities with data inputs and outputs. It instruments
file and process system calls, and associates each call to a process ID (PID), user
identifier, and network address. LineageFS uses a similar definition, associating
process IDs with the file descriptors that the process reads and writes. PASS asso-
ciates a process’s output with references to all input files and the command line and



Secure and Trustworthy Provenance Collection for Digital Forensics 21

process environment of the process; it also appends out-of-band knowledge such
as OS and hardware descriptions, and random number generator seeds, if provided.
In each of these systems, networking and IPC activity is primarily reflected in the
provenance record through manipulation of the underlying file descriptors. Hi-Fi
takes an even broader approach to provenance, treating non-persistent objects such
as memory, IPC, and network packets as principal objects.

In all instances, provenance-aware systems are exclusively concerned with oper-
ations on controlled data types, which are identified by Zhang et al. as files, inodes,
superblocks, socket buffers, IPC messages, IPC message queue, semaphores, and
shared memory [64]. Because controlled data types represent a superset of the ob-
jects tracked by system layer provenance mechanisms, LPM defines whole-system
provenance as a complete description of agents (users, groups) controlling activities
(processes) interacting with controlled data types during system execution.

LPM also extends the provenance monitor concept to incorporate two additional
properties that are required by the collection mechanism to support trustworthy
provenance:

• Authenticated Channel. In distributed environments, provenance-aware sys-
tems must provide a means of assuring authenticity and integrity of provenance
as it is communicated over open networks [4, 38, 48, 65]. LPM does not seek to
provide a complete distributed provenance solution, but we wish to provide the
required building blocks within the host for such a system to exist. LPM must
therefore be able to monitor every network message that is sent or received by
the host, and reliably explain these messages to other provenance-aware hosts in
the network.

• Attested Disclosure. Layered provenance, where additional metadata is dis-
closed from higher operational layers, is a desirable feature in provenance-aware
systems, as applications are able to report workflow semantics that are invisi-
ble to the operating system [42]. LPM must provide a gateway for upgrading
low integrity user space disclosures before logging them in the high integrity
provenance record. This is consistent with the Clark-Wilson Integrity model for
upgrading or discarding low integrity inputs [13].

5.2 Threat Model

LPM is designed to securely collect provenance in the face of an adversary that has
gained remote access to a provenance-aware host or network. Once inside the sys-
tem, the attacker may attempt to remove provenance records, insert spurious infor-
mation into those records, or find gaps in the provenance monitor’s ability to record
information flows. A network attacker may also attempt to forge or strip provenance
from data in transit. Because captured provenance can be put to use in other appli-
cations, the adversary’s goal may even be to target the provenance monitor itself.
The implications and methods of such an attack are domain-specific. For example:



22 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

user space

kernel space

Neo4j

NF Hooks

Prov. Module

Relay
Buffer

SNAP

GZip

SQL

Prov. Hooks

IMA

TPM

Prov. Aware 
Applications

System Provenance Workflow Provenance

Integrity Measurements

Provenance
Recorder

Fig. 1 Diagram of the LPM Framework. Kernel hooks report provenance to a recorder in
userspace, which uses one of several storage back-ends. The recorder is also responsible for eval-
uating the integrity of workflow provenance prior to storing it.

• Scientific Computing: An adversary may wish to manipulate provenance in or-
der to commit fraud, or to inject uncertainty into records to trigger a “Climategate”-
like controversy [50].

• Access Control: When used to mediate access decisions [4, 44, 45, 47], an at-
tacker could tamper with provenance in order to gain unauthorized access, or
to perform a denial-of-service attack on other users by artificially escalating the
security level of data objects.

• Networks: Provenance metadata can also be associated with packets in order to
better understand network events in distributed systems [2, 65, 67]. Coordinating
multiple compromised hosts, an attacker may attempt to send unauthenticated
messages to avoid provenance generation and to perform data exfiltration.

LPM defines a provenance trusted computing base (TCB) to be the kernel mech-
anisms, provenance recorder, and storage back-ends responsible for the collection
and management of provenance. Provenance-aware applications are not considered
part of the TCB.

5.3 Design of LPM

An overview of the LPM architecture is shown in Figure 1. The LPM patch places
a set of provenance hooks around the kernel; a provenance module then registers
to control these hooks, and also registers several Netfilter hooks; the module then
observes system events and transmits information via a relay buffer to a provenance
recorder in user space that interfaces with a datastore. The recorder also accepts



Secure and Trustworthy Provenance Collection for Digital Forensics 23

user spaceText Editor

kernel spaceopen System Call

Look Up Inode

Error Checks

DAC Checks

LSM Hook

LPM Hook

Access Inode

Examine context.
Does request pass policy?
Grant or deny.

Examine context.
Collect provenance.
If successful, grant.

LSM Module

LPM Module

"Authorized?"
Yes or No

"Prov collected?"
Yes or No

Fig. 2 Hook Architecture for the open system call. Provenance is collected after DAC and LSM
checks, ensuring that it accurately reflects system activity. LPM will only deny the operation if it
fails to generate provenance for the event.

disclosed provenance from applications after verifying their correctness using the
Integrity Measurements Architecture (IMA) [51].

5.3.1 Provenance Hooks

The LPM patch introduces a set of hook functions in the Linux kernel. These hooks
behave similarly to the LSM framework’s security hooks in that they facilitate mod-
ularity, and default to taking no action unless a module is enabled. Each provenance
hook is placed directly beneath a corresponding security hook. The return value of
the security hook is checked prior to calling the provenance hook, thus assuring
that the requested activity has been authorized prior to provenance capture. A work-
flow for the hook architecture is depicted in Figure 2. The LPM patch places over
170 provenance hooks, one for each of the LSM authorization hooks. In addition
to the hooks that correspond to existing security hooks, LPM also supports a hook
introduced by Hi-Fi that is necessary to preserve Lamport timestamps on network
messages [30].

5.3.2 Netfilter Hooks

LPM uses Netfilter hooks to implement a cryptographic message commitment pro-
tocol. In Hi-Fi, provenance-aware hosts communicated by embedding a provenance
sequence number in the IP options field [49] of each outbound packet. This approach
allowed Hi-Fi to communicate as normal with hosts that were not provenance-



24 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

aware, but unfortunately was not secure against a network adversary. In LPM,
provenance sequence numbers are replaced with Digital Signature Algorithm (DSA)
signatures, which are space-efficient enough to embed in the IP Options field.
LPM implements full DSA support in the Linux kernel by creating signing rou-
tines to use with the existing DSA verification function. DSA signing and verifi-
cation occurs in the NetFilter inet local out and inet local in hooks. In
inet local out, LPM signs over the immutable fields of the IP header, as well
as the IP payload. In inet local in, LPM checks for the presence of a signature,
then verifies the signature against a configurable list of public keys. If the signature
fails, the packet is dropped before it reaches the recipient application, thus ensuring
that there are no breaks in the continuity of the provenance log. The key store for
provenance-aware hosts is obtained by a PKI and transmitted to the kernel during
the boot process by writing to securityfs. LPM registers the Netfilter hooks
with the highest priority levels, such that signing occurs just before transmission
(i.e., after all other IPTables operations), and signature verification occurs just after
the packet enters the interface (i.e., before all other IPTables operations).

5.3.3 Workflow Provenance

To support layered provenance while preserving our security goals, LPM requires a
means of evaluating the integrity of user space provenance disclosures. To accom-
plish this, LPM Provenance Recorders make use of the Linux Integrity Measurement
Architecture (IMA) [51]. IMA computes a cryptographic hash of each binary before
execution, extends the measurement into a TPM Platform Control Register (PCR),
and stores the measurement in kernel memory. This set of measurements can be used
by the Recorder to make a decision about the integrity of the a Provenance-Aware
Application (PAA) prior to accepting the disclosed provenance. When a PAA wishes
to disclose provenance, it opens a new UNIX domain socket to send the provenance
data to the Provenance Recorder. The Recorder uses its own UNIX domain socket
to recover the process’s pid, then uses the /proc filesystem to find the full path of
the binary, then uses this information to look up the PAA in the IMA measurement
list. The disclosed provenance is recorded only if the signature of PAA matches a
known-good cryptographic hash.

A demonstration of this functionality is shown in Figure 3 for the popular Im-
ageMagick utility 1. ImageMagick contains a batch conversion tool for image refor-
matting, mogrify. Shown in Figure 3, mogrify reads and writes multiple files
during execution, leading to an overtainting problem – at the kernel layer, LPM is
forced to conservatively assume that all outputs were derived from all inputs, creat-
ing false dependencies in the provenance record. To address this, we extended the
Provmon protocol to support a new message, provmsg imagemagick convert,
which links an input file directly to its output file. When the recorder receives this
message, it first checks the list of IMA measurements to confirm that ImageMag-

1 See http://www.imagemagick.org



Secure and Trustworthy Provenance Collection for Digital Forensics 25

UsedUsed

WasDerivedFrom

WasGeneratedBy

WasDerivedFrom

WasGeneratedBy

a.pngb.png

mogrify -format jpg *.png

a.jpgb.jpg

Fig. 3 A provenance graph of image conversion. Here, workflow provenance (WasDerivedFrom)
encodes a relationship that more accurately identifies the output files’ dependencies compared to
only using kernel layer observations (Used, WasGeneratedBy).

ick is in a good state. If successful, it then annotates the existing provenance graph,
connecting the appropriate input and output objects with WasDerivedFrom relation-
ships. LPM presents a minimally modified version of ImageMagick that upports lay-
ered provenance at no additional cost over other provenance-aware systems [21, 43],
and does so in a manner that provides assurance of the integrity of the provenance
log.

5.4 Deploying LPM

We now demonstrate how we used LPM in the deployment of a secure provenance-
aware system. We configured LPM to run on a physical machine with a Trusted Plat-
form Module (TPM). The TPM provides a root of trust that allows for a measured
boot of the system. The TPM also provides the basis for remote attestations to prove
that LPM was in a known hardware and software configuration. The BIOS’s core
root of trust for measurement (CRTM) bootstraps a series of code measurements
prior to the execution of each platform component. Once booted, the kernel then
measures the code for user space components (e.g., provenance recorder) before
launching them, through the use of the Linux Integrity Measurement Architecture
(IMA)[51]. The result is then extended into TPM PCRs, which forms a verifiable
chain of trust that shows the integrity of the system via a digital signature over the
measurements. A remote verifier can use this chain to determine the current state of
the system using TPM attestation.

We configured the system with Intel’s Trusted Boot, which provides a secure
boot mechanism, preventing system from booting into the environment where criti-
cal components (e.g., the BIOS, boot loader and the kernel) are modified. Intel tboot
relies on the Intel TXT extensions to provide a secure execution environment. Ad-
ditionally, we compiled support for IMA into the provenance-aware kernel, which
is necessary in order for the LPM Recorder to be able to measure the integrity of
provenance-aware applications.



26 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

After booting into the provenance-aware kernel, the runtime integrity of the TCB
must also be assured. To protect the runtime integrity of the kernel, we deploy a
Mandatory Access Control (MAC) policy, as implemented by Linux Security Mod-
ules. On our prototype deployments, we enabled SELinux’s MLS policy, the se-
curity of which was formally modeled by Hicks et al. [25]. Refining the SELinux
policy to prevent Access Vector Cache (AVC) denials on LPM components required
minimal effort; the only denial we encountered was when using the PostgreSQL
recorder, which was quickly remedied with the audit2allow tool. Preserving the
integrity of LPM’s user space components, such as the provenance recorder, was as
simple as creating a new policy module. We created a policy module to protect the
LPM recorder and storage back-end using the sepolicy utility. Uncompiled, the
policy module was only 135 lines.



Secure and Trustworthy Provenance Collection for Digital Forensics 27

6 Analyzing the Security of Provenance Monitors

In this section, we briefly consider metrics for evaluating the provenance monitor
solutions that we have discussed in this chapter, specifically Hi-Fi and LPM. We
consider their evaluative metrics from both a coverage and performance perspective.

6.1 Completeness Analysis of Hi-Fi

Hi-Fi demonstrated that malware could be observed throughout a variety of ele-
ments of a malicious worm’s life-cycle. For brevity, we do not discuss full simula-
tion results, which are further discussed in [48].

6.1.1 Recording Malicious Behavior

Our first task is to show that the data collected by Hi-Fi is of sufficient fidelity to
be used in a security context. We focus our investigation on detecting the activity of
network-borne malware. A typical worm consists of several parts. First, an exploit
allows it to execute code on a remote host. This code can be a dropper, which serves
to retrieve and execute the desired payload, or it can be the payload itself. A payload
can then consist of any number of different actions to perform on an infected system,
such as exfiltrating data or installing a backdoor. Finally, the malware spreads to
other hosts and begins the cycle again.

For our experiment, we chose to implement a malware generator which would
allow us to test different droppers and payloads quickly and safely. The genera-
tor is similar in design to the Metasploit Framework [39], in that you can choose
an exploit, dropper, and payload to create a custom attack. However, our tool also
includes a set of choices for generating malware which automatically spreads from
one host to another; this allows us to demonstrate what socket provenance can record
about the flow of information between systems. The malware behaviors that we im-
plement and test are drawn from Symantec’s technical descriptions of actual Linux
malware[58].

To collect provenance data, we prepare three virtual machines on a common sub-
net, all of which are running Hi-Fi. The attacker generates the malware on machine
A and infects machine B by exploiting an insecure network daemon. The malware
then spreads automatically from machine B to machine C. For each of the malicious
behaviors we wish to test, we generate a corresponding piece of malware on ma-
chine A and launch it. Once C has been infected, we retrieve the provenance logs
from all three machines for examination.

Each malware behavior that we test appears in some form in the provenance
record. In each case, after filtering the log to view only the vulnerable daemon and
its descendants, the behavior is clear enough to be found by manual inspection.
Below we describe each behavior and how it appears in the provenance record.



28 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

6.1.2 Persistence and Stealth

Frequently, the first action a piece of malware takes is to ensure that it will con-
tinue to run for as long as possible. In order to persist after the host is restarted, the
malware must write itself to disk in such a way that it will be run when the system
boots. The most straightforward way to do this on a Linux system is to infect one
of the startup scripts run by the init process. Our simulated malware has the abil-
ity to modify rc.local, as the Kaiten trojan does. This shows up clearly in the
provenance log:

[6fe] write B:/etc/rc.local

In this case, the process with provid 0x6fe has modified rc.local on B’s root
filesystem. Persistent malware can also add cron jobs or infect system binaries to
ensure that it is executed again after a reboot. Examples of this behavior are found
in the Sorso and Adore worms. In our experiment, these behaviors result in similar
log entries:

[701] write B:/bin/ps

for an infected binary, and

[710] write B:/var/spool/cron/root.new
[710] link B:/var/spool/cron/root.new to

B:/var/spool/cron/root
[710] unlink B:/var/spool/cron/root.new

for an added cron job.
Some malware is even more clever in its approach to persistence. The Svat virus,

for instance, creates a new C header file and places it early in the default include
path. By doing this, it affects the code of any program which is subsequently com-
piled on that machine. We include this behavior in our experiment as well, and it
appears simply as:

[707] write B:/usr/local/include/stdio.h

6.1.3 Remote Control

Once the malware has established itself as a persistent part of the system, the next
step is to execute a payload. This commonly includes installing a backdoor which
allows the attacker to control the system remotely. The simplest way to do this is to
create a new root-level user on the system, which the attacker can then use to log
in. Because of the way UNIX-like operating systems store their account databases,
this is done by creating a new user with a UID of 0, making it equivalent to the root
user. This is what the Zab trojan does, and when we implement this behavior, it is
clear to see that the account databases are being modified:

[706] link (new) to B:/etc/passwd+
[706] write B:/etc/passwd+



Secure and Trustworthy Provenance Collection for Digital Forensics 29

[706] link B:/etc/passwd+ to B:/etc/passwd
[706] unlink B:/etc/passwd+
[706] link (new) to B:/etc/shadow+
[706] write B:/etc/shadow+
[706] link B:/etc/shadow+ to B:/etc/shadow
[706] unlink B:/etc/shadow+

A similar backdoor technique is to open a port which listens for connections and
provides the attacker with a remote shell. This approach is used by many pieces
of malware, including the Plupii and Millen worms. Our experiment shows that
the provenance record includes the shell’s network communication as well as the
attacker’s activity:

[744] exec B:/bin/bash -i
[744] socksend B:173
[744] sockrecv unknown
[744] socksend B:173
[751] exec B:/bin/cat /etc/shadow
[751] read B:/etc/shadow
[751] socksend B:173
[744] socksend B:173
[744] sockrecv unknown
[744] socksend B:173
[744] link (new) to B:/testfile
[744] write B:/testfile

Here, the attacker uses the remote shell to view /etc/shadow and to write a
new file in the root directory. Since the attacker’s system is unlikely to be running
a trusted instance of Hi-Fi, we see “unknown” socket entries, which indicate data
received from an unprovenanced host. Remote shells can also be implemented as
“reverse shells,” which connect from the infected host back to the attacker. Our tests
on a reverse shell, such as the one in the Jac.8759 virus, show results identical to a
normal shell.

6.1.4 Exfiltration

Another common payload activity is data exfiltration, where the malware reads in-
formation from a file containing password hashes, credit card numbers, or other
sensitive information and sends this information to the attacker. Our simulation for
this behavior reads the /etc/shadow file and forwards it in one of two ways. In
the first test, we upload the file to a web server using HTTP, and in the second, we
write it directly to a remote port. Both methods result in the same log entries:

[85f] read B:/etc/shadow
[85f] socksend B:1ae

Emailing the information to the attacker, as is done by the Adore worm, would
create a similar record.



30 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

6.1.5 Spread

Our experiment also models three different mechanisms used by malware to spread
to newly infected hosts. The first and simplest is used when the entire payload can
be sent using the initial exploit. In this case, there does not need to be a separate
dropper, and the resulting provenance log is the following (indentation is used to
distinguish the two hosts):

[807] read A:/home/evil/payload
[807] socksend A:153

[684] sockrecv A:153
[684] write B:/tmp/payload

The payload is then executed, and the malicious behavior it implements appears in
subsequent log entries.

Another mechanism, used by the Plupii and Sorso worms, is to fetch the payload
from a remote web server. We assume the web server is unprovenanced, so the log
once again contains “unknown” entries:

[7ff] read A:/home/evil/dropper
[7ff] socksend A:15b

[685] sockrecv A:15b
[685] write B:/tmp/dropper
[6ef] socksend B:149
[6ef] sockrecv unknown
[6ef] write B:/tmp/payload

If the web server were a provenanced host, this log would contain host and socket
IDs in the sockrecv entry corresponding to a socksend on the server.

Finally, to illustrate the spread of malware across several hosts, we tested a “re-
lay” dropper which uses a randomly-chosen port to transfer the payload from each
infected host to the next. The combined log of our three hosts shows this process:

[83f] read A:/home/evil/dropper
[83f] socksend A:159

[691] sockrecv A:159
[691] write B:/tmp/dropper
[6f5] exec B:/tmp/dropper

[844] read A:/home/evil/payload
[844] socksend A:15b

[6fc] sockrecv A:15b
[6fc] write B:/tmp/payload
[74e] read B:/tmp/dropper
[74e] socksend B:169

[682] sockrecv B:169
[682] write C:/tmp/dropper
[6e6] exec C:/tmp/dropper

[750] read B:/tmp/payload
[750] socksend B:16b

[6ed] sockrecv B:16b
[6ed] write C:/tmp/payload



Secure and Trustworthy Provenance Collection for Digital Forensics 31

Here we can see the attacker transferring both the dropper and the payload to the
first victim using two different sockets. This victim then sends the dropper and the
payload to the next host in the same fashion.

6.2 Security Analysis of LPM

We now turn our focus to LPM, which provides additional features for demon-
straitng the provenance monitor concept beyond what Hi-Fi enforces. We demon-
strate that LPM meets all of the required security goals for trustworthy whole-
system provenance. In this analysis, we consider an LPM deployment on a physical
machine that was enabled with the Provmon module, whihc mirrors the functional-
ity of Hi-Fi.
Complete. We defined whole-system provenance as a complete description of
agents (users, groups) controlling activities (processes) interacting with controlled
data types during system execution (§ 5.1). LPM attempts to track these system
objects through the placement of provenance hooks (§5.3.1), which directly follow
each LSM authorization hook. The LSM’s complete mediation property has been
formally verified [15, 64]; in other words, there is an authorization hook prior to
every security-sensitive operation. Because every interaction with a controlled data
type is considered security-sensitive, we know that a provenance hook resides on all
control paths to the provenance-sensitive operations. LPM is therefore capable of
collecting complete provenance on the host.

It is important to note that, as a consequence of placing provenance hooks be-
neath authorization hooks, LPM is unable to record failed access attempts. How-
ever, inserting the provenance layer beneath the security layer ensures accuracy of
the provenance record. Moreover, failed authorizations are a different kind of meta-
data than provenance because they do not describe processed data; this information
is better handled at the security layer, e.g., by the SELinux Access Vector Cache
(AVC) Log.
Tamperproof. The runtime integrity of the LPM trusted computing base is assured
via the SELinux MLS policy, and we have written a policy module that protects
the LPM user space components. Therefore, the only way to disable LPM would be
to reboot the system into a different kernel; this action can be disallowed through
secure boot techniques and is detectable by remote hosts via TPM attestation.
Verifiable. While we have not conducted an independent formal verification of
LPM, our argument for its correctness is as follows. A provenance hook follows
each LSM authorization hook in the kernel. The correctness of LSM hook placement
has been verified through both static and dynamic analysis techniques [15, 19, 27].
Because an authorization hook exists on the path of every sensitive operation to con-
trolled data types, and LPM introduces a provenance hook behind each authorization
hook, LPM inherits LSM’s formal assurance of complete mediation over controlled
data types. This is sufficient to ensure that LPM can collect the provenance of ev-



32 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

ery sensitive operation on controlled data types in the kernel (i.e., whole-system
provenance).

Authenticated Channel. Through use of Netfilter hooks [59], LPM embeds a
DSA signature in every outbound network packet. Signing occurs immediately prior
to transmission, and verification occurs immediately after reception, making it im-
possible for an adversary-controlled application running in user space to interfere.
For both transmission and reception, the signature is invisible to user space. Signa-
tures are removed from the packets before delivery, and LPM feigns ignorance that
the options field has been set if get options is called. Hence, LPM can enforce
that all applications participate in the commitment protocol.

Prior to implementing our own message commitment protocol in the kernel, we
investigated a variety of existing secure protocols. The integrity and authenticity
of provenance identifiers could also be protected via IPsec [29], SSL tunneling,2

or other forms of encapsulation [2, 65]. We elected to move forward with our ap-
proach because 1) it ensures the monitoring of all all processes and network events,
including non-IP packets, 2) it does not change the number of packets sent or re-
ceived, ensuring that our provenance mechanism is minimally invasive to the rest of
the Linux network stack, and 3) it preserves compatibility with non-LPM hosts. An
alternative to DSA signing would be HMAC [6], which offers better performance
but requires pairwise keying and sacrifices the non-repudiation policy; BLS, which
approaches the theoretical maximum security parameter per byte of signature [7];
or online/offline signature schemes [9, 16, 20, 53].

Authenticated Disclosures. We make use of IMA to protect the channel between
LPM and provenance-aware applications wishing to disclose provenance. IMA is
able to prove to the provenance recorder that the application was unmodified at the
time it was loaded into memory, at which point the recorder can accept the prove-
nance disclosure into the official record. If the application is known to be correct
(e.g., through formal verification), this is sufficient to establish the runtime integrity
of the application. However, if the application is compromised after execution, this
approach is unable to protect against provenance forgery.

A separate consideration for all of the above security properties are Denial of
Service (DoS) attacks. DoS attacks on LPM do not break its security properties.
If an attacker launches a resource exhaustion attack in order to prevent provenance
from being collected, all kernel operations will be disallowed and the host will cease
to function. If a network attacker tampers with a packet’s provenance identifier, the
packet will not be delivered to the recipient application. In all cases, the provenance
record remains an accurate reflection of system events.

2 See http://docs.oracle.com/cd/E23823 01/html/816-5175/kssl-5.html



Secure and Trustworthy Provenance Collection for Digital Forensics 33

7 Current and Future Challenges to Provenance for Forensics

In this chapter, we have discussed the provenance monitor approach to secure and
trustworthy collection of data provenance, which can be an extraordinary source of
metadata for forensics investigators. The ability to use provenance for this goal is
predicated on its complete collection in an environment that cannot be tampered. As
we discussed through our exploration of the Hi-Fi and Linux Provenance Modules
system, the goals of a provenance monitor can be seen as a superset of reference
monitor goals because of the need for integration of layers and the notion of attested
disclosure, which are properties unique to the provenance environment.

A common limitation shared by provenance collection systems, including not
only Hi-Fi and LPM but also proposals such as SPADE and PASS, is that provenance
collection at the operating system layer demands large amounts of storage. For ex-
ample, in short-lived benchmark trials, each of these systems generated gigabytes of
provenance over the course of just a few minutes [21, 43]. There are some promising
methods of reducing the costs of collection. Ma et al.’s ProTracer system offers dra-
matic improvement in storage cost by making use of a hybrid audit-taint model for
provenance collection [36]. ProTracer only flushes new provenance records to disk
when system writes occur (e.g., file write, packet transmission); on system reads,
ProTracer propagates a taint label between kernel objects in memory. By leveraging
this approach along with other garbage collection techniques [33, 32], ProTracer
reduces the burden of provenance storage to just tens of megabytes per day. Addi-
tionally, Bates et al. [3] considered that much of the provenance collected by high-
fidelity systems is simply uninteresting; in other words, it is the collection of data
that does not provide new infomration essenial to system reconstruction or forensic
analysis, for example. By focusing on information deemed important through its in-
clusion in the system’s trusted computing base as inferred by its mandatory access
policy, it is possible to identify the subset of processes and applications critical to
enforcing the system’s security goals. By focusing on these systems, the amount of
data that needs to be collected can be reduced by over 90%. Such an approach can
be complementary to other proposals for data transformation to assure the efficient
storage of provenance metadata [11] and the use of techniques such as provenance
deduplication [62, 61].

Extending provenance beyond a single host to distributed systems also poses a
considerable challenge. In distributed environments, provenance-aware hosts must
attest the integrity of one another before sharing provenance metadata [34], or in
layered provenance systems where there is no means to attest provenance disclo-
sures [42]. Kernel-based provenance mechanisms [43, 48] and sketches for trusted
provenance architectures [34, 38] fall short of providing a fully provenance-aware
system for distributed, malicious environments. Complicating matters further, data
provenance is conceptualized in dramatically different ways throughout the litera-
ture, such that any solution to provenance security would need to be general enough
to support the needs of a variety of diverse communities. Extending provenance
monitors into these environments can provide a wealth of new information to the
forensics investigator but must be carefully designed and implemented.



34 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

While we focus on the collection of provenance in this chapter, it is also impor-
tant to be able to efficiently query the provenance once it is Provenance queries re-
garding transitive causes/effects of a single system state or event can be answered by
a recursive procedure that retrieves relevant portions of a provenance graph [66, 65].
While such queries are useful in many applications, e.g., to find root causes of a de-
tected policy violation, further research is necessary into efficient query languages
to allow system operators to perform more complex queries that can identify user-
specified subgraphs from the collected provenance in a manner that is easily usable
and that facilitate inference of analytics.

To conclude, provenance represents a powerful new means for gathering data
about a system for a forensics investigator. Being able to establish the context within
which data was created and generating a chain of custody describing how the data
came to take its current form can provide vast new capabilities. However, as the
systems discussed in this chapter demonstrate, ensuring that provenance is securely
collected is a challenging task. Future systems can build from existing work to ad-
dresses the challenges we outlined above in order to bring the promises of prove-
nance to practical reality.



Secure and Trustworthy Provenance Collection for Digital Forensics 35

Acknowledgements This work draws in part from [38], [48], and [5]. We would like to thank
our co-authors of those works, including Patrick McDaniel, Thomas Moyer, Stephen McLaughlin,
Erez Zadok, Marianne Winslett, and Radu Sion, as well as reviewers of those original papers who
provided us with valuable feedback. This work is supported in part by the U.S. National Science
Foundation under grants CNS-1540216, CNS-1540217, and CNS-1540128.

References

1. Aldeco-Pérez, R., Moreau, L.: Provenance-based Auditing of Private Data Use. In: Proceed-
ings of the 2008 International Conference on Visions of Computer Science: BCS International
Academic Conference, VoCS’08, pp. 141–152. British Computer Society, Swinton, UK, UK
(2008)

2. Bates, A., Butler, K., Haeberlen, A., Sherr, M., Zhou, W.: Let SDN Be Your Eyes: Secure
Forensics in Data Center Networks. SENT (2014)

3. Bates, A., Butler, K.R.B., Moyer, T.: Take Only What You Need: Leveraging Mandatory Ac-
cess Control Policy to Reduce Provenance Storage Costs. In: Proceedings of the 7th Interna-
tional Workshop on Theory and Practice of Provenance, TaPP’15 (2015)

4. Bates, A., Mood, B., Valafar, M., Butler, K.: Towards Secure Provenance-based Access Con-
trol in Cloud Environments. In: Proceedings of the 3rd ACM Conference on Data and Appli-
cation Security and Privacy, CODASPY ’13, pp. 277–284. ACM, New York, NY, USA (2013).
DOI 10.1145/2435349.2435389

5. Bates, A., Tian, D., Butler, K.R.B., Moyer, T.: Trustworthy Whole-System provenance for
the linux kernel. In: Proceedings of the 2015 USENIX Security Symposium (Security’15).
Washington, DC USA (2015)

6. Bellare, M., Canetti, R., Krawczyk, H.: Keyed Hash Functions and Message Authentication.
In: Proceedings of Crypto’96, LNCS, vol. 1109, pp. 1–15 (1996)

7. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: C. Boyd (ed.)
Advances in Cryptology – ASIACRYPT 2001 (2001)

8. Carata, L., Akoush, S., Balakrishnan, N., Bytheway, T., Sohan, R., Seltzer, M., Hopper, A.: A
primer on provenance. Commun. ACM 57(5), 52–60 (2014). DOI 10.1145/2596628. URL
http://doi.acm.org/10.1145/2596628

9. Catalano, D., Di Raimondo, M., Fiore, D., Gennaro, R.: Off-line/On-line Signatures: Theoret-
ical Aspects and Experimental Results. In: PKC’08: Proceedings of the Practice and theory
in public key cryptography, 11th international conference on Public key cryptography, pp.
101–120. Springer-Verlag, Berlin, Heidelberg (2008)

10. Centers for Medicare & Medicaid Services: The Health Insurance Portability and Account-
ability Act of 1996 (HIPAA) (1996). URL http://www.cms.hhs.gov/hipaa/

11. Chapman, A., Jagadish, H., Ramanan, P.: Efficient Provenance Storage. In: Proceedings of the
2008 ACM Special Interest Group on Management of Data Conference, SIGMOD’08 (2008)

12. Chiticariu, L., Tan, W.C., Vijayvargiya, G.: DBNotes: A Post-it System for Relational
Databases Based on Provenance

13. Clark, D.D., Wilson, D.R.: A Comparison of Commercial and Military Computer Security
Policies. In: Proceedings of the IEEE Symposium on Security and Privacy. Oakland, CA,
USA (1987)

14. Department of Homeland Security: A Roadmap for Cybersecurity Research (2009)
15. Edwards, A., Jaeger, T., Zhang, X.: Runtime Verification of Authorization Hook Placement

for the Linux Security Modules Framework. In: Proceedings of the 9th ACM Conference on
Computer and Communications Security, CCS’02 (2002)

16. Even, S., Goldreich, O., Micali, S.: On-line/off-line Digital Signatures. In: Proceedings on
Advances in cryptology, CRYPTO ’89, pp. 263–275. Springer-Verlag New York, Inc., New
York, NY, USA (1989). URL http://portal.acm.org/citation.cfm?id=118209.118233



36 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

17. Foster, I.T., Vöckler, J.S., Wilde, M., Zhao, Y.: Chimera: AVirtual Data System for Represent-
ing, Querying, and Automating Data Derivation. In: Proceedings of the 14th Conference on
Scientific and Statistical Database Management, SSDBM’02 (2002)

18. Frew, J., Bose, R.: Earth System Science Workbench: A Data Management Infrastructure for
Earth Science Products. In: Proceedings of the 13th International Conference on Scientific
and Statistical Database Management, pp. 180–189. IEEE Computer Society (2001)

19. Ganapathy, V., Jaeger, T., Jha, S.: Automatic placement of authorization hooks in the linux
security modules framework. In: Proceedings of the 12th ACM Conference on Computer
and Communications Security, CCS ’05, pp. 330–339. ACM, New York, NY, USA (2005).
DOI 10.1145/1102120.1102164

20. Gao, C.z., Yao, Z.a.: A Further Improved Online/Offline Signature Scheme. Fundam. Inf. 91,
523–532 (2009). URL http://portal.acm.org/citation.cfm?id=1551775.1551780

21. Gehani, A., Tariq, D.: SPADE: Support for Provenance Auditing in Distributed Environments.
In: Proceedings of the 13th International Middleware Conference, Middleware ’12 (2012)

22. Glavic, B., Alonso, G.: Perm: Processing Provenance and Data on the Same Data Model
Through Query Rewriting. In: Proceedings of the 25th IEEE International Conference on
Data Engineering, ICDE ’09 (2009)

23. Hall, E.: The Arnolfini Betrothal: Medieval Marriage and the Enigma of Van Eyck’s Double
Portrait. University of California Press, Berekely, CA (1994)

24. Hasan, R., Sion, R., Winslett, M.: The Case of the Fake Picasso: Preventing History Forgery
with Secure Provenance. In: Proceedings of the 7th USENIX Conference on File and Storage
Technologies, FAST’09. San Francisco, CA, USA (2009)

25. Hicks, B., Rueda, S., St.Clair, L., Jaeger, T., McDaniel, P.: A Logical Specification and Anal-
ysis for SELinux MLS Policy. ACM Trans. Inf. Syst. Secur. 13(3), 26:1–26:31 (2010). DOI
10.1145/1805874.1805982

26. Holland, D.A., Bruan, U., Maclean, D., Muniswamy-Reddy, K.K., Seltzer, M.I.: Choosing a
Data Model and Query Language for Provenance. IPAW’08 (2008)

27. Jaeger, T., Edwards, A., Zhang, X.: Consistency Analysis of Authorization Hook Placement in
the Linux Security Modules Framework. ACM Trans. Inf. Syst. Secur. 7(2), 175–205 (2004).
DOI 10.1145/996943.996944

28. Jones, S.N., Strong, C.R., Long, D.D.E., Miller, E.L.: Tracking Emigrant Data via Transient
Provenance. In: 3rd Workshop on the Theory and Practice of Provenance, TAPP’11 (2011)

29. Kent, S., Atkinson, R.: RFC 2406: IP Encapsulating Security Payload (ESP) (1998)
30. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed Sys-

tem. Commun. ACM 21(7), 558–565 (1978). DOI 10.1145/359545.359563. URL
http://doi.acm.org/10.1145/359545.359563

31. Lampson, B.W.: A Note on the Confinement Problem. Communications of the ACM 16(10),
613–615 (1973)

32. Lee, K.H., Zhang, X., Xu, D.: High Accuracy Attack Provenance via Binary-based Execu-
tion Partition. In: Proceedings of the 20th ISOC Network and Distributed System Security
Symposium, NDSS (2013)

33. Lee, K.H., Zhang, X., Xu, D.: LogGC: Garbage Collecting Audit Log. In: Proceedings of the
2013 ACM Conference on Computer and Communications Security, CCS (2013)

34. Lyle, J., Martin, A.: Trusted Computing and Provenance: Better Together. In: 2nd Workshop
on the Theory and Practice of Provenance, TaPP’10 (2010)

35. Ma, S., Lee, K.H., Kim, C.H., Rhee, J., Zhang, X., Xu, D.: Accurate, low cost and
instrumentation-free security audit logging for windows. In: Proceedings of the 31st An-
nual Computer Security Applications Conference, ACSAC 2015, pp. 401–410. ACM (2015).
DOI 10.1145/2818000.2818039

36. Ma, S., Zhang, X., Xu, D.: ProTracer: Towards Practical Provenance Tracing by Alternating
Between Logging and Tainting. In: Proceedings of the 23rd ISOC Network and Distributed
System Security Symposium, NDSS (2016)

37. Macko, P., Seltzer, M.: A General-purpose Provenance Library. In: 4th Workshop on the
Theory and Practice of Provenance, TaPP’12 (2012)



Secure and Trustworthy Provenance Collection for Digital Forensics 37

38. McDaniel, P., Butler, K., McLaughlin, S., Sion, R., Zadok, E., Winslett, M.: Towards a Secure
and Efficient System for End-to-End Provenance. In: Proceedings of the 2nd conference on
Theory and practice of provenance. USENIX Association, San Jose, CA, USA (2010)

39. Metasploit Project. http://www.metasploit.com
40. Moreau, L., Groth, P., Miles, S., Vazquez-Salceda, J., Ibbotson, J., Jiang, S., Munroe, S., Rana,

O., Schreiber, A., Tan, V., Varga, L.: The provenance of electronic data. Commun. ACM 51(4),
52–58 (2008). DOI http://doi.acm.org/10.1145/1330311.1330323

41. Mouallem, P., Barreto, R., Klasky, S., Podhorszki, N., Vouk, M.: Tracking Files in the Kepler
Provenance Framework. In: SSDBM 2009: Proceedings of the 21st International Conference
on Scientific and Statistical Database Management (2009)

42. Muniswamy-Reddy, K.K., Braun, U., Holland, D.A., Macko, P., Maclean, D., Margo, D.,
Seltzer, M., Smogor, R.: Layering in Provenance Systems. In: Proceedings of the 2009 Con-
ference on USENIX Annual Technical Conference, ATC’09 (2009)

43. Muniswamy-Reddy, K.K., Holland, D.A., Braun, U., Seltzer, M.: Provenance-aware Stor-
age Systems. In: Proceedings of the Annual Conference on USENIX ’06 Annual Technical
Conference, Proceedings of the 2006 Conference on USENIX Annual Technical Conference
(2006)

44. Nguyen, D., Park, J., Sandhu, R.: Dependency Path Patterns As the Foundation of Access
Control in Provenance-aware Systems. In: Proceedings of the 4th USENIX Conference on
Theory and Practice of Provenance, TaPP’12, pp. 4–4. USENIX Association, Berkeley, CA,
USA (2012)

45. Ni, Q., Xu, S., Bertino, E., Sandhu, R., Han, W.: An Access Control Language for a General
Provenance Model. In: Secure Data Management (2009)

46. Pancerella, C., Hewson, J., Koegler, W., Leahy, D., Lee, M., Rahn, L., Yang, C., Myers, J.D.,
Didier, B., McCoy, R., Schuchardt, K., Stephan, E., Windus, T., Amin, K., Bittner, S., Lans-
ing, C., Minkoff, M., Nijsure, S., von Laszewski, G., Pinzon, R., Ruscic, B., Wagner, A.,
Wang, B., Pitz, W., Ho, Y.L., Montoya, D., Xu, L., Allison, T.C., Green Jr., W.H., Frenklach,
M.: Metadata in the Collaboratory for Multi-Scale Chemical Science. In: Proceedings of the
2003 international conference on Dublin Core and metadata applications: supporting com-
munities of discourse and practice—metadata research & applications, pp. 13:1–13:9. Dublin
Core Metadata Initiative (2003)

47. Park, J., Nguyen, D., Sandhu, R.: A Provenance-Based Access Control Model. In: Proceedings
of the 10th Annual International Conference on Privacy, Security and Trust (PST), pp. 137–
144 (2012). DOI 10.1109/PST.2012.6297930

48. Pohly, D.J., McLaughlin, S., McDaniel, P., Butler, K.: Hi-Fi: Collecting High-Fidelity Whole-
System Provenance. In: Proceedings of the 2012 Annual Computer Security Applications
Conference, ACSAC ’12. Orlando, FL, USA (2012)

49. Postel, J.: RFC 791: Internet protocol (1981)
50. Revkin, A.C.: Hacked E-mail is New Fodder for Climate Dispute. New York Times 20 (2009)
51. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of a TCG-based

Integrity Measurement Architecture. In: Proceedings of the 13th USENIX Security Sympo-
sium. San Diego, CA, USA (2004)

52. Sar, C., Cao, P.: Lineage file system. Online at http://crypto.stanford.edu/cao/lineage.html
(2005)

53. Shamir, A., Tauman, Y.: Improved Online/Offline Signature Schemes. In: Advances in Cryp-
tology — CRYPTO 2001 (2001)

54. Silva, C.T., Anderson, E.W., Santos, E., Freire, J.: Using VisTrails and Provenance for Teach-
ing Scientific Visualization. Comput. Graph. Forum () 30(1), 75–84 (2011)

55. Sion, R.: Strong worm. In: Proceedings of the 2008 The 28th International Conference on
Distributed Computing Systems (2008)

56. Spillane, R.P., Sears, R., Yalamanchili, C., Gaikwad, S., Chinni, M., Zadok, E.: Story Book:
An efficient extensible provenance framework. In: First Workshop on the Theory and Practice
of Provenance. USENIX (2009)

57. Sundararaman, S., Sivathanu, G., Zadok, E.: Selective versioning in a secure disk system. In:
Proceedings of the 17th conference on Security symposium (2008)



38 Adam Bates, Devin J. Pohly, and Kevin R. B. Butler

58. Symantec: Symantec Security Response. http://www.symantec.com/security response (2015)
59. The Netfilter Core Team: The Netfilter Project: Packet Mangling for Linux 2.4.

http://www.netfilter.org/ (1999). URL http://crypto.stanford.edu/ cao/lineage.html
60. U.S. Code: 22 U.S. Code § 2778 - Control of arms exports and imports (1976). URL

https://www.law.cornell.edu/uscode/text/22/2778
61. Xie, Y., Feng, D., Tan, Z., Chen, L., Muniswamy-Reddy, K.K., Li, Y., Long, D.D.: A Hybrid

Approach for Efficient Provenance Storage. In: Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, CIKM ’12 (2012)

62. Xie, Y., Muniswamy-Reddy, K.K., Long, D.D.E., Amer, A., Feng, D., Tan, Z.: Compressing
Provenance Graphs. In: Proceedings of the 3rd USENIX Workshop on the Theory and Practice
of Provenance (2011)

63. Zanussi, T., Yaghmour, K., Wisniewski, R., Moore, R., Dagenais, M.: relayfs: An efficient
unified approach for transmitting data from kernel to user space. In: Proceedings of the 2003
Linux Symposium, Ottawa, ON, Canada, pp. 494–506 (2003)

64. Zhang, X., Edwards, A., Jaeger, T.: Using CQUAL for Static Analysis of Authorization Hook
Placement. In: Proceedings of the 11th USENIX Security Symposium (2002)

65. Zhou, W., Fei, Q., Narayan, A., Haeberlen, A., Loo, B.T., Sherr, M.: Secure Network Prove-
nance. In: ACM Symposium on Operating Systems Principles (SOSP) (2011)

66. Zhou, W., Mapara, S., Ren, Y., Haeberlen, A., Ives, Z., Loo, B.T., Sherr, M.: Distributed time-
aware provenance. In: Proc. VLDB (2013)

67. Zhou, W., Sherr, M., Tao, T., Li, X., Loo, B.T., Mao, Y.: Efficient Querying and Maintenance
of Network Provenance at Internet-Scale. In: Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Measurement of Data (2010)


