
This paper is included in the Proceedings of the
25th USENIX Security Symposium

August 10–12, 2016 • Austin, TX

ISBN 978-1-931971-32-4

Open access to the Proceedings of the
25th USENIX Security Symposium

is sponsored by USENIX

Making USB Great Again with usbfilter
Dave (Jing) Tian and Nolen Scaife, University of Florida; Adam Bates, University of Illinois at

Urbana–Champaign; Kevin R. B. Butler and Patrick Traynor, University of Florida

 https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tian

USENIX Association 25th USENIX Security Symposium 415

Making USB Great Again with USBFILTER

Dave (Jing) Tian⋆, Nolen Scaife⋆, Adam Bates†, Kevin R. B. Butler⋆, and Patrick Traynor⋆
⋆ University of Florida, Gainesville, FL

† University of Illinois, Urbana-Champaign, IL
{daveti,scaife,adammbates,butler,traynor}@ufl.edu

Abstract
USB provides ubiquitous plug-and-play connectivity for
a wide range of devices. However, the complex na-
ture of USB obscures the true functionality of devices
from the user, and operating systems blindly trust any
physically-attached device. This has led to a number
of attacks, ranging from hidden keyboards to network
adapters, that rely on the user being unable to identify
all of the functions attached to the host. In this paper, we
present USBFILTER, which provides the first packet-level
access control for USB and can prevent unauthorized in-
terfaces from successfully connecting to the host operat-
ing system. USBFILTER can trace individual USB pack-
ets back to their respective processes and block unautho-
rized access to any device. By instrumenting the host’s
USB stack between the device drivers and the USB con-
troller, our system is able to filter packets at a granular-
ity that previous works cannot — at the lowest possible
level in the operating system. USBFILTER is not only able
to block or permit specific device interfaces; it can also
restrict interfaces to a particular application (e.g., only
Skype can access my webcam). Furthermore, our ex-
perimental analysis shows that USBFILTER introduces a
negligible (3-10µs) increase in latency while providing
mediation of all USB packets on the host. Our system
provides a level of granularity and extensibility that re-
duces the uncertainty of USB connectivity and ensures
unauthorized devices are unable to communicate with the
host.

1 Introduction

The Universal Serial Bus (USB) provides an easy-to-use,
hot-pluggable architecture for attaching external devices
ranging from cameras to network interfaces to a single
host computer. USB ports are pervasive; they can of-
ten be found on the front, back, and inside of a com-
mon desktop PC. Furthermore, a single USB connector
may connect multiple device classes. These composite

devices allow disparate hardware functions such as a mi-
crophone and speakers to appear on the same physical
connector (e.g., as provided by a headset). In the host
operating system, technologies such as USBIP [21] pro-
vide the capability to remotely connect USB devices to
a host over a network. The result is a complex combina-
tion of devices and functionalities that clouds the user’s
ability to reason about what is actually connected to the
host.

Attacks that exploit this uncertainty have become
more prevalent. Firmware attacks such as BadUSB [27]
modify benign devices to have malicious behavior (e.g.,
adding keyboard emulation to a storage device or per-
form automatic tethering to another network). Hardware
attacks [1] may inject malware into a host, provide RF
remote control capabilities, or include embedded proxy
hardware to inject and modify USB packets. Attack-
ers may also exfiltrate data from the host by leveraging
raw I/O (e.g., using libusb [14]) to communicate with
the USB device directly, or bypass the security mecha-
nism employed by the USB device controller by sending
specific USB packets to the device from the host USB
controller [4]. Unfortunately, the USB Implementers Fo-
rum considers defending against malicious devices to be
the responsibility of the user [44], who is unlikely to be
able to independently verify the functionality and intent
of every device simply by its external appearance, and
may just plug in USB devices to take a look [43].

Modern operating systems abstract USB authorization
to physical control, automatically authorizing devices
connected to the host, installing and activating drivers,
and enabling functionality. We believe that a finer-
grained control over USB is required to protect users. In
this paper, we make the following contributions:

• Design and develop a fine-grained USB ac-
cess control system: We introduce USBFILTER, a
packet-level firewall for USB. Our system is the first
to trace individual USB packets back to the source
or destination process and interface. USBFILTER

416 25th USENIX Security Symposium USENIX Association

rules can stop attacks on hosts by identifying and
dropping unwanted USB packets before they reach
their destination in the host operating system.

• Implement and characterize performance: We
demonstrate how USBFILTER imposes minimal
overhead on USB traffic. As a result, our system
is well-suited for protecting any USB workload.

• Demonstrate effectiveness in real-world scenar-
ios: We explore how USBFILTER can be used
to thwart attacks and provide security guarantees
for benign devices. USBFILTER can pin devices
(e.g., webcams) to approved programs (e.g., Skype,
Hangouts) to prevent malicious software on a host
from enabling or accessing protected devices.

USBFILTER is different from previous works in this
space because it enables the creation of rules that explic-
itly allow or deny functionality based on a wide range
of features. GoodUSB [41] relies on the user to explic-
itly allow or deny specific functionality based on what
the device reports, but cannot enforce that the behav-
ior of a device matches what it reports. SELinux [35]
policies and PinUP [13] provide mechanisms for pinning
processes to filesystem objects, but USBFILTER expands
this by allowing individual USB packets to be associated
with processes. This not only allows our system to per-
mit pinning devices to processes, but also individual in-
terfaces of composite devices.

Our policies can be applied to differentiate individual
devices by identifiers presented during device enumera-
tion. These identifiers, such as serial number, provide
a stronger measure of identification than simple prod-
uct and vendor codes. While not a strong authentication
mechanism, USBFILTER is able to perform filtering with-
out additional hardware. The granularity and extensibil-
ity of USBFILTER allows it to perform the functions of
existing filters [41] while permitting much stronger con-
trol over USB devices.

The remainder of this paper is structured as follows: In
Section 2, we provide background on the USB protocol
and explain why it is not great anymore; in Section 3,
we discuss the security goals, design and implementation
of our system; in Section 4, we discuss how USBFILTER
meets our required security guarantees; in Section 5, we
evaluate USBFILTER and discuss individual use cases; in
Section 6, we provide additional discussion; in Section 7,
we explore related work; and in Section 8, we conclude.

2 Background

A USB device refers to a USB transceiver, USB hub, host
controller, or peripheral device such as a human-interface

USB Device
Interface 0 Interface 1 Interface 2

In Out In InOut Out

EP 0 EP 0
EP 1 EP1

EP 0 EP 0 EP 0 EP 0
EP 1 EP 1 EP 1 EP 1
EP 2 EP 2EP 2 EP 2

EP n EP n

Figure 1: A detailed view of a generic USB device. Sim-
ilar to a typical USB headset, this device has three inter-
faces and multiple endpoints.

device (HID, e.g., keyboard and mouse), printer, or stor-
age. However, the device may have multiple functions
internally, known as interfaces. An example device with
three interfaces is shown in Figure 1. USB devices with
more than one interface are known as composite devices.
For example, USB headsets often have at least three in-
terfaces: the speaker, the microphone, and the volume
control functionalities. Each interface is treated as an in-
dependent entity by the host controller. The operating
system loads a separate device driver for each interface
on the device.

The USB protocol works in a master-slave fashion,
where the host USB controller is responsible to poll the
device both for requests and responses. When a USB
device is attached to a host machine, the host USB con-
troller queries the device to obtain the configurations of
the device, and activates a single configuration supported
by the device. For instance, when a smartphone is con-
nected with a host machine via USB, users can choose
it to be a storage or networking device. By parsing the
current active configuration, the host operating system
identifies all the interfaces contained in the configura-
tion, and loads the corresponding device drivers for each
interface. This whole procedure is called USB enumera-
tion [10]. Once a USB device driver starts, it first parses
the endpoints information embedded within this interface
as shown in Figure 1.

While the interface provides the basic information for
the host operating system to load the driver, the endpoint
is the communication unit when a driver talks with the
USB device hardware. Per specification, the endpoint 0
(EP0) should be supported by default, enabling Control
(packet) transfer from a host to a device to further probe
the device, prepare for data transmission, and check for
errors. All other endpoints can be optional though there
is usually at least EP1, providing Isochronous, Inter-
rupt, or Bulk (packet) transfers, which are used by au-
dio/video, keyboard/mouse, and storage/networking de-
vices respectively. All endpoints are grouped into either
In pipes, where transfers are from the device to the host,

2

USENIX Association 25th USENIX Security Symposium 417

or Out pipes, where transfers are from the host to the
device. This in/out pipe determines the transmission di-
rection of a USB packet. With all endpoints set up, the
driver is able to communicate with the device hardware
by submitting USB packets with different target end-
points, packet types, and directions. These packets are
delivered to the host controller, which calls the controller
hardware to encode USB packets into electrical signals
and send them to the device.

2.1 Why USB Was Great
Prior to USB’s introduction in the 1990s, personal com-
puters used a number of different and often platform-
specific connectors for peripherals. Serial and parallel
ports, PS/2, SCSI, ADB, and others were often not hot-
pluggable and required users to manually set configura-
tion options (such as the SCSI ID). The widespread in-
dustry adoption of USB fixed many of these issues by
providing a common specification for peripherals. Hard-
ware configuration is now handled exclusively by the
host, which is able to manage many devices on a sin-
gle port. The relative ease with which a USB peripheral
can be installed on a host is simultaneously its greatest
and most insecure property.

The USB subsystem has been expanded in software
as well, with Virtio [30] supporting I/O virtualization in
KVM, enabling virtual USB devices in VMs, and pass-
ing through the physical devices into VMs. USBIP [21]
transfers USB packets via IP, making remote USB de-
vice sharing possible. Wireless USB (WUSB) [19] and
Media Agnostic USB (MAUSB) [16] promote the avail-
ability of USB devices by leveraging different wireless
communication protocols, making the distinction among
local USB devices, virtual ones, and remote ones vanish.

Overall, the utility and complexity of USB has been
steadily increasing in both hardware and software. Ad-
vances in circuit and chip design now allow hidden func-
tionality to be placed inside the USB plug [1]. The ease-
of-use that made USB great now threatens users by ob-
scuring the individual interfaces in a USB device.

2.2 How USB Lost its Greatness
Attacks on USB prey on the fundamental misunderstand-
ing of how devices are constructed from interfaces. At-
tacks such as BadUSB [27] and TURNIPSCHOOL [1]
(itself designed on specifications from nation-state ac-
tors) use composite devices to present multiple interfaces
to a host. Often these include one benign or expected in-
terface and one or more malicious interfaces, including
keyboards [9, 27] and network interfaces [27, 1]. With-
out communicating with the host operating system, a
malicious USB device can only obtain power from the

host. While it may be possible to perform power anal-
ysis attacks without sending USB packets, we focus on
the problem of connecting malicious devices to the host’s
operating system. All of these attacks share a common
thread: they attach an unknown interface to a host with-
out the user’s knowledge. Since operating systems im-
plicitly trust any device attached, these hidden functions
are enumerated, their drivers are loaded, and they are
granted access to the host with no further impediment.

Data exfiltration from host machines may be the main
reason why USB storage is banned or restricted in enter-
prise and government environments. Current secure stor-
age solutions rely on access control provided by the host
operating system [23] or use network-based device au-
thentication [22]. While access controls can be bypassed
by raw I/O, which communicates to the device directly
from userspace (e.g., using libusb [14]), network-based
methods are vulnerable to network spoofing (e.g., ARP
spoofing [32] and DNS spoofing [36]). It is thus un-
clear whether data exfiltration has occurred or not until
the USB port is glued or locked [39]. The remainder of
this paper will show how a packet-level filter for USB
permits fine-grained access controls, eliminating the im-
plicit trust model while providing strong guarantees.

3 USB Access Control

The complex nature of the USB protocol and the variety
of devices that can be attached to it makes developing a
robust and efficient access control mechanism challeng-
ing. Layers in the operating system between the process
and the hardware device create difficulties when identi-
fying processes. Accordingly, developing a system such
as USBFILTER is not as simple as intercepting USB pack-
ets and dropping those that match rules. In this section,
we discuss our security goals, design considerations, and
implementation of USBFILTER while explaining the chal-
lenges of developing such a system.

3.1 Threat and Trust Models
We consider an adversary against our system who has
restricted external physical or full network access to a
given host. The adversary may launch physical attacks
such as attaching unauthorized USB devices to the host
system or tampering with the hardware of previously-
authorized devices to add additional functionality. The
physically-present adversary may not open the device or
tamper with the internal storage, firmware, or any other
hardware. This type of adversary might (for example) be
present in an data center or retail location, where devices
have exposed USB ports, but tampering with the chas-
sis of the device would raise suspicion or sound alarms.
The adversary may also launch network attacks in order

3

418 25th USENIX Security Symposium USENIX Association

Rule
DB

USBFILTER

App1 App2 App3

keyboard
storage

headset
cameramouse

wireless

Kernel Space

User Space I/O operation

USB packet

Figure 2: USBFILTER implements a USB-layer reference
monitor within the kernel, by filtering USB packets to
different USB devices to control the communications be-
tween applications and devices based on rules config-
ured.

to enable or access authorized devices from unauthorized
processes or devices. In either case, the adversary may
attempt to exfiltrate data from the host system via both
physical and virtual USB devices.

We consider the following actions by an adversary:

• Device Tampering: The adversary may attempt
to attach or tamper with a previously-authorized
device to add unauthorized functionality (e.g.,
BadUSB [27]).

• Unauthorized Devices: Unauthorized devices at-
tached to the system either physically or virtu-
ally [21] can be used to discreetly interact with the
host system or to provide data storage for future ex-
filtration.

• Unauthorized Access: The adversary may attempt
to enable or access authorized devices on a host
(e.g., webcam, microphone, etc.) via unauthorized
software to gain access to information or function-
ality that would otherwise inaccessible.

We assume that as a kernel component, the integrity of
USBFILTER depends on the integrity of the operating sys-
tem and the host hardware (except USB devices). Code
running in the kernel space has unrestricted access to the
kernel’s memory, including our code, and we assume that
the code running in the kernel will not tamper with USB-
FILTER. We discuss how we ensure runtime and platform
integrity in our experimental setup in Section 3.4.

3.2 Design Goals
Inspired by the Netfilter [40] framework in the Linux
kernel, we designed USBFILTER to enable administrator-

Rule
DB

USBFILTER

App1 App2 App3

Kernel Space

User Space

usbtables

Host Controller

USB Devices

Storage
Driver

Input
Driver

Video
Driver

USB packet

I/O
operation

URB

netlink

usbfilter
modules

Figure 3: The architecture of USBFILTER.

defined rule-based filtering for the USB protocol. To
achieve this, we first designed our system to satisfy the
concept of a reference monitor [2], shown in Figure 2.
While these goals are not required for full functionality
of USBFILTER, we chose to design for stronger security
guarantees to ensure that processes attempting to access
hardware USB devices directly would be unable to cir-
cumvent our system. We define the specific goals as fol-
lows:

G1 Complete Mediation. All physical or virtual USB
packets must pass through USBFILTER before deliv-
ery to the intended destination.

G2 Tamperproof. USBFILTER may not be bypassed or
disabled as long as the integrity of the operating sys-
tem is maintained.

G3 Verifiable. The user-defined rules input into the
system must be verifiably correct. These rules may
not conflict with each other.

While the above goals support the security guarantees
that we want USBFILTER to provide, we expand upon
these to provide additional functionality:

G4 Granular. Any mutable data in a USB packet
header must be accessible by a user-defined rule. If
the ultimate destination of a packet is a userspace
process, USBFILTER must permit the user to specify
the process in a rule.

G5 Modular. USBFILTER must be extensible and allow
users to provide submodules to support additional
types of analysis.

3.3 Design and Implementation
The core USBFILTER component is statically compiled
and linked into the Linux kernel image, which hooks the

4

USENIX Association 25th USENIX Security Symposium 419

flow of USB packets before they reach the USB host con-
troller which serves the USB device drivers, as shown in
Figure 3. Like Netfilter, this USB firewall checks a user-
defined rule database for each USB packet that passes
through it and takes the action defined in the first match-
ing rule. A user-space program, USBTABLES, provides
mediated read/write access to the rule database. Since
USBFILTER intercepts USB packets in the kernel, it can
control access to both physical and virtual devices.

3.3.1 Packet Filtering Rules

To access external USB devices, user-space applications
request I/O operations which are transformed into USB
request blocks (URBs) by the operating system. The
communication path involves the process, the device, and
the I/O request itself (USB packet). Similarly, a USBFIL-
TER rule can be described using the process information,
the device information, and the USB packet information.

A USBFILTER rule R can be expressed as a triple
(N,C ,A) where N is the name of the rule, C is a set of
conditions, and A∈{ALLOW,DROP} is the action that is
taken when all of the conditions are satisfied. As long as
the values in conditions, action, and name are valid, this
rule is valid, but may not be correct considering other ex-
isting rules. We discuss verifying the correctness of rules
in Section 4.

3.3.2 Traceback

USB packets do not carry attribution data that can be
used to determine the source or destination process of
a packet. We therefore need to perform traceback to
attribute packets to interfaces and processes.

Interfaces. As discussed in Section 2, a USB device can
have multiple interfaces, each with a discrete function-
ality served by a device driver in the operating system.
Once a driver is bound with an interface, it is able to
communicate with that interface using USB packets.

Determining the driver responsible for receiving or
sending a given USB packet is useful for precisely con-
trolling device behaviors. However, identifying the re-
sponsible driver is not possible at the packet level, since
the packets are already in transit and do not contain iden-
tifying information. While we could infer the respon-
sible driver for simple USB devices, such as a mouse,
this becomes unclear with composite USB devices with
multiple interfaces (some of which may be served by the
same driver).

To recover this important information from USB
packets without changing each driver and extending
the packet structure, we save the interface index into
the kernel endpoint structure during USB enumeration.

This reverse mapping of interface to driver needs to be
performed only once per device. The interface index
distinguishes interfaces belonging to the same physical
device and USB packets submitted by different driver
instances. Once the mapping has been completed, the
USB host controller is able to easily trace the originating
interface back to the USB packets.

Processes. Similarly, tracking the destination or source
process responsible for a USB packet is not trivial due
to the way modern operating systems abstract device ac-
cess from applications. For example, when communi-
cating with USB storage devices, the operating system
provides several abstractions between the application and
the raw device, including a filesystem, block layer, and
I/O scheduler. Furthermore, applications generally sub-
mit asynchronous I/O requests, causing the kernel to per-
form the communications task on a separate background
thread.

This problem also appears when inspecting USB net-
work device packets, including both wireline (e.g., Eth-
ernet) dongles and wireless (e.g., WiFi) adapters. It is
common for these USB device drivers to have their own
RX/TX queues to boost the system performance using
asynchronous I/O. In these cases, USB is an intermedi-
ate layer to encapsulate IP packets into USB packets for
processing by the USB networking hardware.

These cases are problematic for USBFILTER because
a naïve traceback approach will often only identify the
kernel thread as the origin of a USB packet. To recover
the process identifier (PID) of the true origin, we must
ensure that this information persists between all layers
within the operating system before the I/O request is
transformed into a USB packet.1

USBFILTER instruments the USB networking driver
(usbnet), the USB wireless driver (rt2x00usb), the USB
storage driver (usb-storage), as well as the block layer
and I/O schedulers. Changes to the I/O schedulers are
needed to avoid the potential merging of two block re-
quests from different processes. By querying the rule
database and USBFILTER modules, USBFILTER sets up a
filter for all USB packets right before being dispatched
to the devices.

3.3.3 Userspace Control

USBTABLES manages USBFILTER rules added in the ker-
nel and saves all active rules in a database. Using udev,
saved rules are flushed into the kernel automatically upon
reboot. USBTABLES is also responsible for verifying the
correctness of rules as we will discuss in Section 4. Once

1USBFILTER does not overlap with Netfilter or any other IP packet
filtering mechanisms which work along the TCP/IP stack.

5

420 25th USENIX Security Symposium USENIX Association

verified, new rules will be synchronized with the kernel
and saved locally.

If no user-defined rules are present, USBFILTER en-
forces default rules that are designed to prevent impact
on normal kernel activities (e.g., USB hot-plugs). These
rules can be overridden or augmented by the user as de-
sired.

3.4 Deployment

We now demonstrate how we use existing security tech-
niques in the deployment of USBFILTER. Attestation and
MAC policy are necessary for providing complete medi-
ation and tamperproof reference monitor guarantees, but
not for the functionality of the system. The technologies
we reference in this section are illustrative examples of
how these goals can be met.

3.4.1 Platform Integrity

We deployed USBFILTER on a physical machine with a
Trusted Platform Module (TPM). The TPM provides a
root of trust that allows for a measured boot of the system
and provides the basis for remote attestations to prove
that the host machine is in a known hardware and soft-
ware configuration. The BIOS’s core root of trust for
measurement (CRTM) bootstraps a series of code mea-
surements prior to the execution of each platform com-
ponent. Once booted, the kernel then measures the code
for user-space components (e.g., provenance recorder)
before launching them using the Linux Integrity Mea-
surement Architecture (IMA)[31]. The result is then ex-
tended into TPM PCRs, which forms a verifiable chain
of trust that shows the integrity of the system via a dig-
ital signature over the measurements. A remote verifier
can use this chain to determine the current state of the
system using TPM attestation. Together with TPM, we
also use Intel’s Trusted Boot (tboot)2

3.4.2 Runtime Integrity

After booting into the USBFILTER kernel, the runtime in-
tegrity of the TCB (defined in Section 3.1) must also be
assured. To protect the runtime integrity of the kernel,
we deploy a Mandatory Access Control (MAC) policy,
as implemented by Linux Security Modules. We enable
SELinux’s MLS policy, the security of which was for-
mally modeled by Hicks et al. [20]. We also ensure that
USBTABLES executes in a restricted environment and
that the access to the rules database saved on the disk
is protected by defining an SELinux Policy Module and
compiling it into the SELinux Policy.

2 See http://sf.net/projects/tboot

4 Security

In this section, we demonstrate that USBFILTER meets
the security goals outlined in Section 3 using the deploy-
ment and configurations described in that section.

Complete Mediation (G1). As we previously discussed,
USBFILTER must mediate all USB packets between de-
vices and applications on the host. In order to ensure
this, we have instrumented USBFILTER into the USB host
controller, which is the last hop for USB packets before
leaving the host machine and the first when entering it.
Devices cannot initiate USB packet transmission without
permission from the controller.

We also instrument the virtual USB host controller
(vhci) to cover virtual USB devices (e.g., USB/IP). To
support other non-traditional USB host controllers such
as Wireless USB [19] and Media Agnostic USB [16],
USBFILTER support is easily added via a simple kernel
API call and the inclusion of a header file.

Tamperproof (G2). USBFILTER is statically com-
piled and linked into the kernel image to avoid being
unloaded as a kernel module. The integrity of this
runtime, the associated database, and user-space tools
is assured through the SELinux policy as described in
Section 3.4.2. Tampering with the kernel or booting a
different kernel is the only way to bypass USBFILTER,
and platform integrity measures provide detection
capabilities for this scenario (Section 3.4.1).

Formal Verification (G3). The formal verification of
USBFILTER rules is implemented as a logic engine within
USBTABLES using GNU Prolog [11]. Instead of trying to
prove that an abstract model of rule semantics is correctly
implemented by the code, which is usually intractable for
the Linux kernel, we limit our focus on rule correctness
and consistency checking. Each time USBTABLES is in-
voked to add a new rule, the new rule and the existing
rules are loaded into the logic engine for formal verifica-
tion. This process only needs to be performed once when
adding a new rule and USBFILTER continues to run while
the verification takes place.

The verification checks for rules with the same con-
ditions but different actions. These rules are consid-
ered conflicting and USBTABLES will terminate with er-
ror when this occurs. We define the correctness of a rule:

is_correct(R,R)←
is_name_unique(R)∧
are_condition_values_in_range(R)∧
has_no_con f lict_with_existing_rules(R,R).

where R is a new USBFILTER rule and R for all other

6

USENIX Association 25th USENIX Security Symposium 421

existing rules maintained by USBFILTER. If the new rule
has a unique name, all the values of conditions are in
range, and it does not conflict with any existing rules, the
rule is correct.

While the name and the value checks are straightfor-
ward, there are different conflicting cases between the
conditions and the action, particularly when a rule does
not contain all conditions. For example, a rule can be
contradictory with, a sub rule of, or the same as another
existing rule. As such, we define the general conflict be-
tween two rules as follows:

general_con f lict(Ra,Rb)←
∀Ci � C :

(∃Ca
i � Ra ∧∃Cb

i � Rb ∧ value(Ca
i) �= value(Cb

i))∨
(∃Ca

i � Ra∧ � ∃Cb
i � Rb)∨

(� ∃Ca
i � Ra∧ � ∃Cb

i � Rb).

A rule Ra is generally conflicted with another rule Rb if
all conditions used by Ra are a subset of the ones spec-
ified in Rb. We consider a general conflict to occur if
the new rule and an existing rule would fire on the same
packet.

Based on the general conflict, we define weak conflict
and strong conflict as follows:

weak_con f lict(Ra,Rb)←
general_con f lict(Ra,Rb)∧action(Ra) = action(Rb).

strong_con f lict(Ra,Rb)←
general_con f lict(Ra,Rb)∧action(Ra) �= action(Rb).

While weak conflict shows that the new rule could be
a duplicate of an existing rule, strong conflict presents
that this new rule would not work. The weak conflict,
however, depending on the requirement and the imple-
mentation, may be allowed temporarily to shrink the
scope of an existing rule while avoiding the time gap
between the old rule removed and the new rule added.
For instance, rule A drops any USB packets writing
data into any external USB storage devices. Later on,
the user decides to block write operations only for
the Kingston thumb drive by writing rule B, which is
weak conflicted with rule A, since both rules have the
same destination and action. When the user wants to
unblock the Kingston storage by writing rule C, rule C
is strong conflicted with both rule A and B, since rule C
has a different action, and will never work as expected
because of rule A/B. By relying on the logic reasoning
of Prolog, we are able to guarantee that a rule before
added is formally verified no conflict with existing rules
3.

3Note that all rules are monotonic by design, which means rules to
be added cannot override existing ones. Future work will add general
rules, which can be overwritten by new rules.

-d|--debug enable debug mode
-c|--config path to configuration file (TBD)
-h|--help display this help message
-p|--dump dump all the rules
-a|--add add a new rule
-r|--remove remove an existing rule
-s|--sync synchronize rules with kernel
-e|--enable enable usbfilter
-q|--disable disable usbfilter
-b|--behave change the default behavior
-o|--proc process table rule
-v|--dev device table rule
-k|--pkt packet table rule
-l|--lum LUM table rule
-t|--act table rule action

proc: pid,ppid,pgid,uid,euid,gid,egid,comm
dev: busnum,devnum,portnum,ifnum,devpath,product,

manufacturer,serial
pkt: types,direction,endpoint,address
lum: name
behavior/action: allow|drop

Figure 4: The output of “usbtables -h”. The per-
mitted conditions are divided into 4 tables: the process
table, the device table, the packet table, and the Linux
USBFILTER Module (LUM) table.

Granular (G4). A USBFILTER rule can contain 21
different conditions, excluding the name and action
field. We further divide these conditions into 4 tables,
including the process, device, packet, and the Linux
USBFILTER Module (LUM) table, as shown in Figure 4.
The process table lists conditions specific to target
applications; the device table contains details of USB
devices in the system; the packet table includes impor-
tant information about USB packets; and the LUM table
determines the name of the LUM to be used if needed.
Note that all LUMs should be loaded into the kernel
before being used in USBFILTER rules.

Module Extension (G5). To support customized rule
construction and deep USB packet analysis, USBFILTER
allows system administrators to write Linux USBFIL-
TER Modules (LUMs), and load them into the kernel as
needed. To write a LUM, developers need only include
the <linux/usbfilter.h> header file in the kernel module,
implement the callback lum_filter_urb(), and register the
module using usbfilter_register_lum(). Once registered,
the LUM can be referenced by its name in the construc-
tion of a rule. When a LUM is encountered in a rule,
besides other condition checking, USBFILTER calls the
lum_filter_urb() callback within this LUM, passing the
USB packet as the sole parameter. The callback returns
1 if the packet matches the target of this LUM, 0 other-
wise. Note that the current implementation supports only
one LUM per rule.

7

422 25th USENIX Security Symposium USENIX Association

5 Evaluation

The USBFILTER host machine is a Dell Optiplex 7010
with an Intel Quad-core 3.20 GHz CPU with 8 GB mem-
ory and is running Ubuntu Linux 14.04 LTS with kernel
version 3.13. The machine has two USB 2.0 controllers
and one USB 3.0 controller, provided by the Intel 7 Se-
ries/C210 Series chipset. To demonstrate the power of
USBFILTER, we first examine different USB devices and
provide practical use cases which are non-trivial for tra-
ditional access control mechanisms. Finally we measure
the overhead introduced by USBFILTER.

The default behavior of USBFILTER in our host ma-
chine is to allow the USB packet if no rule matches the
packet. A more constrained setting is to change the de-
fault behavior to drop, requiring each permitted USB de-
vice to need an allow rule. In this setting, malicious de-
vices have to impersonate benign devices to allow com-
munications, which are still regulated by the rules, e.g.,
no HID traffic allowed for a legit USB storage device.
All tests use the same front-end USB 2.0 port on the ma-
chine.

5.1 Case Studies
Listen-only USB headset. The typical USB headset
is a composite device with multiple interfaces includ-
ing speakers, microphone, and volume control. Sen-
sitive working environments may ban the use of USB
headsets due to possible eavesdropping using the micro-
phone [17]. Physically disabling the headset microphone
is often the only mechanism for permanently removing
it, as there is no other way to guarantee the microphone
stays off. Users can mute or unmute the microphone
using the desktop audio controls at any time after lo-
gin. However, with USBFILTER, the system administra-
tor can guarantee that the headset’s microphone remains
disabled and cannot be enabled or accessed by users.

We use a Logitech H390 Headset to demonstrate how
to achieve this guarantee on the USBFILTER host ma-
chine:
usbtables -a logitech-headset -v ifnum=2,product=

"Logitech USB Headset",manufacturer=Logitech -k
direction=1 -t drop

This rule drops any incoming packets from the
Logitech USB headset’s microphone. By adding the
interface number (ifnum=2), we avoid breaking other
functionality in the headset.

Customizing devices. To further show how USBFIL-
TER can filter functionalities provided by USB devices,
we use Teensy 3.2 [29] to create a complex USB de-
vice with five interfaces including a keyboard, a mouse,
a joystick, and two serial ports. The keyboard contin-

ually types commands in the terminal, while the mouse
continually moves the cursor. We can write USBFILTER
rules to completely shutdown the keyboard and mouse
functionalities:
usbtables -a teensy1 -v ifnum=2,manufacturer=

Teensyduino,serial=1509380 -t drop
usbtables -a teensy2 -v ifnum=3,manufacturer=

Teensyduino,serial=1509380 -t drop

In these rules, we use condition “manufacturer” and “se-
rial” (serial number) to limit the Teensy’s functionality.
Different interface numbers represent the keyboard and
the mouse respectively. After these rules applied, both
the keyboard and the mouse return to normal.

Default-deny input devices. Next, we show how to de-
fend against HID-based BadUSB attacks using USBFIL-
TER. These types of devices are a type of trojan horse;
they appear to be one device, such as a storage device,
but secretly contain hidden input functionality (e.g., key-
board or mouse). When attached to a host, the device
can send keystrokes to the host and perform actions as
the current user.

First, we create a BadUSB storage device using a Rub-
ber Ducky [18], which looks like a USB thumb drive but
opens a terminal and injects keystrokes. Then we add
following rules into the host machine:
usbtables -a mymouse -v busnum=1,devnum=4,portnum=2,

devpath=1.2,product="USB Optical Mouse",
manufacturer=PixArt -k types=1 -t allow

usbtables -a mykeyboard -v busnum=1,devnum=3,
portnum=1,devpath=1.1,
product="Dell USB Entry Keyboard",
manufacturer=DELL -k types=1 -t allow

usbtables -a noducky -k types=1 -t drop

The first two rules whitelist the existing keyboard and
mouse on the host machine; the last rule drops any USB
packets from other HID devices. After these rules are
inserted into the kernel, reconnecting the malicious de-
vice does nothing. Attackers may try to impersonate the
keyboard or mouse on the host machine. However, we
have leveraged information about the physical interface
(busnum and portnum) to write the first two rules,
which would require the attacker to unplug the existing
devices, plug the malicious device in, and impersonate
the original devices including the device’s VID/PID
and serial number. We leave authenticating individual
USB devices to future work, however USBFILTER is
extensible so that authentication can be added and used
in rules.

Data exfiltration. To prevent data exfiltration from the
host machine to USB storage devices, we write a LUM
(Linux USBFILTER Module) to block the SCSI write
command from the host to the device, as shown in Fig-
ure 9 in the Appendix. The LUM then registers itself
with USBFILTER and can be referenced by its name in

8

USENIX Association 25th USENIX Security Symposium 423

rule constructions. In this case study, we use a Kingston
DT 101 II 2G USB flash drive, and insert the following
rule:

usbtables -a nodataexfil -v manufacturer=Kingston
-l name=block_scsi_write -t drop

This rule prevents modification of files on the stor-
age device. Interestingly, vim reports files on the de-
vice to be read-only, despite the filesystem reporting that
the files are read-write. Since USBFILTER is able to trace
packets back to the applications initiating I/O operations
at the Linux kernel block layer, we are able to write rules
blocking (or allowing) specific users or applications from
writing to flash drive:

usbtables -a nodataexfil2 -o uid=1001
-v manufacturer=Kingston
-l name=block_scsi_write -t drop

usbtables -a nodataexfil3 -o comm=vim
-v manufacturer=Kingston
-l name=block_scsi_write -t drop

The first rule prevents the user with uid=1001 from
writing anything to the USB storage; the second blocks
vim from writing to the storage. We can also block any
writes to USB storage devices:

usbtables -a nodataexfil4
-l name=block_scsi_write -t drop

USBFILTER logs dropped USB packets, and these logs
can easily be used in a centralized alerting system, noti-
fying administrators to unauthorized access attempts.
Webcam pinning. Webcams can easily be enabled and
accessed by attackers from exploiting vulnerable appli-
cations. Once access has been established, the attacker
can listen or watch the environment around the host com-
puter. In this case study, we show how to use USBFILTER
to restrict the use of a Logitech Webcam C310 to specific
users and applications.

usbtables -a skype -o uid=1001,comm=skype -v
serial=B4482A20 -t allow

usbtables -a nowebcam -v serial=B4482A20 -t drop

The serial number of the Logitech webcam is spec-
ified in the rules to differentiate any others that may
be attached to the system as well as to prevent other
webcams from being attached. The first rule allows
USB communication with the webcam only if the user is
uid=1001 and the application is Skype. The following
nowebcam rule drops other USB packets to the webcam
otherwise. As expected, the user can use the webcam
from his Skype but not from Pidgin, and other users
cannot start video calls even with Skype.

USB charge-only. Another form of BadUSB attacks is
DNS spoofing using smartphones. Once plugged into the
host machine, the malicious phone automatically enables
USB tethering, is recognized as a USB NIC by the host,

Prolog Engine Min Avg Med Max Dev

Time (20 rules) 128.0 239.8 288.0 329.0 73.2
Time (100 rules) 132.0 251.7 298.0 485.0 78.6

Table 1: Prolog reasoning time (µs) averaged by 100
runs.

then injects spoofed DNS replies into the host. The re-
sulting man-in-the-middle attack gives the attacker ac-
cess to the host’s network communications without the
authorization of the user. To prevent this attack, we use
USBFILTER to prevent all USB packets from a Google
Nexus 4 smartphone:
usbtables -a n4-charger -v product="Nexus 4" -t drop

This rule rule drops any USB packets to/from the
phone, which enforces the phone as a pure charging de-
vice without any USB functionality. The phone is unable
to be used for storage or tethering after the rule is applied.

We can construct a more specific charge-only rule:
usbtables -a charger -v busnum=1,portnum=4 -t drop

This rule specifies a specific physical port on the host
and this port can only be used for charging. This type
of rule is useful where USB ports may be exposed (e.g.,
on a point of sale terminal) and cannot be physically
removed. It is also vital to defend against malicious
devices whose firmware can be reprogrammed to forge
the VID/PID such as BadUSB, since this type of rule
only leverages the physical information on the host
machine. USBFILTER can partition all physical USB
ports and limit the USB traffic on each port.

5.2 Benchmarks
We first measure the performance of the user-space tool,
USBTABLES. We then measure the overhead imposed by
USBFILTER.

The measurement host is loaded with the rules men-
tioned in the case studies above before beginning bench-
marking. When coupled with the default rules provided
by USBFILTER, there are 20 total rules loaded in the ker-
nel. We chose 20 because we believe that a typical en-
terprise host’s USB devices (e.g., keyboard, mouse, re-
movable storage, webcam, etc.) will total less than 20.
Then we load 100 rules in the kernel to understand the
scalability of USBFILTER.

5.2.1 Microbenchmark

USBTABLES Performance. We measure the time used
by the Prolog engine to formally verify a rule before it is
added into the kernel. We loaded the kernel with 20 and

9

424 25th USENIX Security Symposium USENIX Association

Figure 5: Filebench throughput (MB/s) using
fileserver workload with different mean
file sizes.

Figure 6: Iperf bandwidth (MB/s) using TCP
with different time intervals.

Figure 7: Iperf bandwidth (MB/s) using UDP
with different time intervals.

Figure 8: Performance comparison of real-
world workloads.

Rule Adding Min Avg Med Max Dev

Time (20 rules) 5.1 5.9 6.1 6.6 0.3
Time (100 rules) 4.9 5.9 6.1 6.8 0.4

Table 2: Rule adding operation time (ms) averaged by
100 runs.

100 rules and measured the time to process the rules. For
each new rule, the Prolog engine needs to go through the
existing rules and check for conflicts.

We measured 100 trials of each test. The performance
of the Prolog engine is shown in Table 1. The average
time used by the Prolog engine is 239.8 µs with 20
rules and 251.7 µs with 100 rules. This fast speed is the
result of using GNU Prolog (gplc) compiler to compile
Prolog into assembly for acceleration. We also measure
the overhead for USBTABLES to add a new rule to the
kernel space. This includes loading existing rules into
the Prolog engine, checking for conflicts, saving the rule

USB Enumeration Min Avg Med Max Dev Cost

Stock Kernel 32.0 33.9 34.1 34.8 0.6 N/A
USBFILTER (20 rules) 33.2 34.4 34.3 35.8 0.7 1.5%

USBFILTER (100 rules) 33.9 34.8 34.6 36.0 0.5 2.7%

Table 3: USB enumeration time (ms) averaged by 20
runs.

locally, passing the rule to the kernel, and waiting for the
acknowledgment. As shown in Table 2, the average time
of adding a rule using USBTABLES stays at around 6 ms
in both cases, which is a negligible one-time cost.

USB Enumeration Overhead. For this test, we used
the Logitech H390 USB headset, which has 4 interfaces.
We manually plugged the headset into the host 20 times.
We then compare the results between the USBFILTER
kernel with varying numbers of rules loaded and the
stock Ubuntu kernel, where USBFILTER is fully disabled,

10

USENIX Association 25th USENIX Security Symposium 425

Packet Filtering Min Avg Med Max Dev

Time (20 rules) 2.0 2.6 3.0 5.0 0.5
Time (100 rules) 2.0 9.7 10.0 15.0 1.0

Table 4: Packet filtering time (µs) averaged by 1500
packets.

Configuration 1K 10K 100K 1M 10M 100M

Stock 97.6 98.1 99.2 105.5 741.7 5177.7
USBFILTER 97.7 98.2 99.6 106.3 851.5 6088.4
Overhead 0.1% 0.1% 0.4% 0.8% 14.8% 17.6%

Table 5: Latency (ms) of the fileserver workload
with different mean file sizes.

as shown in Table 3. The average USB enumeration
time is 33.9 ms for the stock kernel and 34.4 ms and
34.8 ms for the USBFILTER kernel with 20 and 100 rules
preloaded respectively. Comparing to the stock kernel,
USBFILTER only introduces 1.5% and 2.7% overheads,
or less than 1 ms even with 100 rules preloaded.

Packing Filtering Overhead. The overhead of USB
enumeration introduced by USBFILTER is the result
of packet filtering and processing performed on each
USB packet, since there may be hundreds of packets
during USB enumeration, depending on the number of
interface and endpoints of the device. To capture this
packet filtering overhead, we plug in a Logitech M105
USB Optical Mouse, and move it around to generate
enough USB packets. We then measure the time used
by USBFILTER to determine whether the packet should
be filtered/dropped or not for 1500 packets, as shown
in Table 4. The average cost per packet are 2.6 µs and
9.7 µs respectively, including the time to traverse all
the 20/100 rules in the kernel, and the time used by the
benchmark itself to get the timing and print the result.
The 100-rule case shows that the overhead of USBFILTER
is quadruped when the number of rule increases by one
order of magnitude. As we mentioned before, most
common USB usages could be covered within 20 rules.
We assume it is rare for a system to have 100 rules for
different USB devices. To search in hundreds of rules
efficiently, we can setup a hash table using e.g., USB
port numbers as keys to save rules instead of a linear
array (list) currently implemented.

5.2.2 Macrobenchmark

We use filebench [37] and iperf [42] to measure through-
puts and latencies of file operations, and bandwidths
of network activities, under the stock kernel and the
USBFILTER kernel, using different USB devices. The

USBFILTER kernel is loaded with 20 rules introduced in
the case studies before benchmarking.

Filebench. We choose the fileserver workload in
filebench, with the following settings: the number of files
in operation is 20; the number of working threads is 1;
the run time for each test case is 2 minutes; the mean
file size in operation ranges from 1 KB to 100 MB; all
other settings are default provided by filebench. These
settings emulate a typical usage of USB storage devices,
where users plug in flash drives to copy or edit some files.
All file operations happen in a SanDisk Cruzer Fit 16
GB flash drive. The throughputs under the stock kernel
and the USBFILTER kernel are demonstrated in Figure 5.
When the mean file size is less than 1 MB, the through-
put of USBFILTER is close to the one of the stock kernel.
Since there is at most 20×1 MB data involved in block
I/O operations, both the stock kernel and USBFILTER can
handle this data size smoothly. When the mean file size is
greater than 1 MB, USBFILTER shows lower throughputs
comparing to the stock kernel, as the result of rule match-
ing for each USB packet. Compared to the stock kernel,
USBFILTER imposes 14.7% and 18.4% overheads when
the mean file sizes are 10 MB and 100 MB respectively.
That is, when there is 20× 100 MB (2 GB) involved in
block I/O operations, the throughput decreases from 8.7
MB/s to 7.1 MB/s, when USBFILTER is enabled.

The corresponding latencies are shown in Table 5.
The latency of USBFILTER is higher than the stock
kernel. Following the throughput model, the latencies
between the two kernels are close when the mean file
size is less than 1 MB. The overhead introduced by
USBFILTER is less than 1.0%. When the mean file sizes
are 10 MB and 100 MB, USBFILTER imposed 14.8%
and 17.6% overheads in latency. comparing to the stock
kernel. That is, to deal with 20× 100 MB data, users
need one more second to finish all the operations with
USBFILTER enabled, which is acceptable for most users.

iperf. We use iperf to measure bandwidths of upstream
TCP and UDP communications, where the host machine
acts as a server, providing local network access via a
Ralink RT5372 300 Mbps USB wireless adapter. The
time interval for each transmission is 10 seconds, and
each test runs 5 minutes (30 intervals). For TCP, we use
the default TCP window size 64 KB; for UDP, we use
the default available UDP bandwidth size 10 MB. The
TCP bandwidths of the two kernels are shown in Fig-
ure 6, where we aggregate each two intervals into one,
reducing the number of sampling points from 30 to 15.
and the average bandwidths are also listed in dot lines.
Though having different transmission patterns, the aver-
age bandwidths of both are close, with the stock kernel at
2.75 Mbps and USBFILTER at 2.52 Mbps. Comparing to

11

426 25th USENIX Security Symposium USENIX Association

the stock kernel, USBFILTER introduces 8.4% overhead.
The UDP benchmarking result closely resembles

TCP, as shown in Figure 7. Regardless of transmission
patterns, average bandwidth of the two kernels is similar,
with the stock kernel at 3.48 Mbps and USBFILTER at
3.27 Mbps. Comparing to the TCP transmission, UDP
transmission is faster due to the simpler design/imple-
mentation of UDP, and USBFILTER introduces 6.0%
overhead. In both cases, USBFILTER has demonstrated a
low impact to the original networking component.

5.3 Real-world Workloads
To better understand the performance impact of USB-
FILTER, we generate a series of real-world workloads to
measure typical USB use cases. In the KVM [24] work-
load, we create and install a KVM virtual machine au-
tomatically from the Ubuntu 14.04 ISO image file (581
MB) saved on USB storage. In the Chrome workload,
we access the web browser benchmark site [5] via a USB
wireless adapter. In the ClamAV [25] workload, we scan
the unzipped Ubuntu 14.04 ISO image saved on the USB
storage for virus using ClamAV. In the wget workload,
we download the Linux kernel 4.4 (83 MB) via the USB
wireless adapter using wget. The USB storage is the San-
Disk 16 GB flash drive, and the USB wireless adapter
is the Ralink 300 Mbps wireless card. All time mea-
surements are in seconds except the Chrome workload,
where scores are given, and are divided by 10 to fit into
the figure. Figure 8 shows the comparison between the
two kernels when running these workloads. In all work-
loads, USBFILTER either performs slightly better than the
stock kernel, or imposes a small overhead compared to
the stock kernel in our test. It is clear that USBFILTER
approximates the original system performance.

5.4 Summary
In this section, we showed how USBFILTER can help
administrators prevent access to unauthorized (and un-
known) device interfaces, restrict access to authorized
devices using application pinning, and prevent data ex-
filtration. Our system introduces between 3 and 10 µs of
latency on USB packets while checking rules, introduc-
ing minimal overhead on the USB stack.

6 Discussion

6.1 Process Table
We have successfully traced each USB packet to its orig-
inating application for USB storage devices by passing
the PID information along the software stack from the

VFS layer, through the block layer, to the USB layer
within the kernel. However, it is not always possible to
find the PID for each USB packet received by the USB
host controller. One example is HID devices, such as
keyboards and mouses. Keystrokes and mouse move-
ments happen in the interrupt (IRQ) context, where the
current stopped process has nothing to do with this USB
packet. All these packets are delivered to the Xorg server
in the user space, which then dispatches the inputs to dif-
ferent applications registered for different events. USB-
FILTER is able to make sure that only Xorg can receive
inputs from the keyboard and mouse. To guarantee the
USB packet delivered to the desired application, we can
enhance the Xorg server to understand USBFILTER rules.

The other example comes from USB networking de-
vices. Though we have enhanced the general USB wire-
line driver usbnet to pass the PID information into
each USB packet, unlike USB storage devices sharing
the same usb-storage driver, many USB Ethernet
dongles have their own drivers instead of using the gen-
eral one. Even worse, there is no general USB wire-
less driver at all. Depending of the device type and
model, one may need to instrument the corresponding
driver to have the PID information, like what we did
for rt2800usb driver. Future work will introduce a
new USB networking driver framework to be shared by
specific drivers, providing a unified interface for passing
PID information into USB packets.

Another issue of using process table in USBFILTER
rules is TOCTTOU (time-of-check-to-time-of-use) at-
tacks. A malicious process can submit a USB packet
to the kernel and exit. When the packet is finally han-
dled by the host controller, USBFILTER is no longer able
to find the corresponding process given the PID. Fortu-
nately, these attacks does not impact rules without pro-
cess tables. When process information is crucial to the
system, we recommending using USBTABLES to change
the default behavior to “drop”, make sure that no packet
would get through without an explicit matching rule.

6.2 System Caching

USBFILTER is able to completely shut down any write op-
erations to external USB storage devices, preventing any
form of data exfiltration from the host machine. Sim-
ilarly, one can also write a “block_scsi_read” LUM to
stop read operations from storage devices. Nevertheless,
this LUM may not be desired or work as expected in re-
ality. To correctly mount the filesystem in the storage
device, the kernel has to read the metadata saved in the
storage. One solution would be to delay the read block-
ing till the filesystem is mounted. However, for perfor-
mance considerations, the Linux kernel also reads ahead
some data in the storage, and brings it into the system

12

USENIX Association 25th USENIX Security Symposium 427

cache (page cache). All following I/O operations will
happen in the memory rather than the storage. While
memory protection is out of scope for this paper, we rely
on the integrity of the kernel to enforce the MAC model
it applies. Write operations, even though in the memory,
will be flushed into the storage, where USBFILTER is able
to provide a strong and useful guarantee.

6.3 Packet Analysis From USB Devices

Because of the master-slave nature of the USB proto-
col, we do not setup USBFILTER in the response path,
which is from the device to the host, due to performance
considerations. However, enabling USBFILTER in the re-
sponse path provides new opportunities to defend against
malicious devices and users, since the response packet
could be inspected with the help of USBFILTER. For ex-
ample, one can write a LUM to limit the capability of
a HID device, such as allowing only three different key
actions from a headset’s volume control button, which
is implemented by GoodUSB as a customized keyboard
driver, or disabling sudo commands for unknown key-
boards. Another useful case is to filter the spoofing
DNS reply message embedded in the USB packet sent
by malicious smart phones or network adapters, to de-
fend against DNS cache poisoning. We are planning to
investigate these new case studies in future work.

6.4 Malicious USB Drivers and USB
Covert Channels

While BadUSB is the most prominent attack that exploits
the USB protocol, we observe that using USB communi-
cation as a side channel to steal data from host machines,
or to inject malicious code into hosts, is another tech-
nically mature and plausible threat. On the Linux plat-
form, with the development of libusb [14], more USB
drivers run within user space and can be delivered as bi-
naries. On Windows platform, PE has been a common
format of device drivers. To use these devices, users
have to run these binary files without knowing if these
drivers are doing something else in the meantime.4 For
instance, USB storage devices should use bulk packets
to transfer data per the USB spec. However, a malicious
storage driver may use control packets to stealthily ex-
filtrate data as long as the malicious storage is able to
decode the packet. This works because control transfers
are mainly used during the USB enumeration process.
With the help of USBFILTER, one can examine each USB
packet, and filter unrecognized ones without breaking the
normal functionality of the device.

4N.B. that there are ways to instrument DLL files on Windows plat-
form, though this does not appear to be commonly done with drivers.

6.5 Usability Issues

To write USBFILTER rules, one needs some knowl-
edge about the USB protocol in general, as well as
the target USB device. The lsusb command under
Linux provides a lot of useful information that can di-
rectly be mapped into rule construction. Another tool
usb-devices also helps users understand USB de-
vices. Windows has a GUI program USBView to vi-
sualize the hierarchy and configuration of USB devices
plugged into the host machine. While users can write
some simple rules, we expect that developers will pro-
vide useful LUMs, which may require deep understand-
ing of the USB protocol and domain specific knowledge
(e.g., SCSI, and will share these LUMs with the com-
munity. We wll also provide more useful LUMs in the
future.

7 Related Work

Modern operating systems implicitly approve all inter-
faces on any device that has been physically attached
to the host. Due to this, a wide range of attacks have
been built on USB including malware and data exfiltra-
tion on removable storage [15, 34, 46], tampered device
firmware [27, 7], and unauthorized devices [1]. These
attacks fall into two major categories: those that involve
data ingress and egress via removable storage and those
that involve the attachment of unknown USB interfaces.

Proposals for applying access control to USB storage
devices [12, 28, 38, 48] fall short because they cannot
guarantee that the USB write requests are blocked from
reaching the device. Likewise, defenses against unau-
thorized or malicious device interfaces [41, 33] and dis-
abling device drivers are coarse and cannot distinguish
between desired and undesired usage of a particular in-
terface. Another solution employed by the Windows Em-
bedded platform [26] binds USB port numbers with the
VID/PID/CID (device class ID) information of devices
to accept/reject the device plugged in. While CID helps
limit the usage of the device, this solution does not work
for composite devices equipped with multiple interfaces
(with different CIDs). Besides, users may have to update
the policy each time when different devices are plugged
into the same port. Given the increasing ubiquity of
USB, this is not a sustainable solution. Guardat demon-
strates a means of expressing a robust set of rules for
storage access but requires substantial new mechanisms
for operation within a host computer, such as implemen-
tation within a hybrid disk microcontroller [45].

Netfilter [40] has become the de facto network fire-
wall standard on Linux due to its ability to perform
fine-grained filtering on network packets between ap-
plications and the physical network interface. Netfilter

13

428 25th USENIX Security Symposium USENIX Association

can prevent compromise of a program by preventing un-
wanted packets from reaching the process. Similarly, our
system can defend processes by denying USB traffic be-
fore it reaches its destination.

Furthermore, fine-grained filtering has been applied to
the usage of filesystem objects by applications [13, 35],
however, these filters take place after the host and op-
erating system have enumerated the device and loaded
any device drivers. USBFILTER applies filtering at the
USB packet layer, preventing unauthorized access to in-
terfaces regardless of whether they have been approved
elsewhere. Since our system operates between the device
drivers and the USB host controller and traces packets
back to their source or destination application, USBFIL-
TER can uniquely filter access to any USB interface.

While USBFILTER working in the host operating sys-
tem directly, other USB security solutions make use of
virtualization. GoodUSB [41] leverages a QEMU-KVM
as a honeypot to analyze malicious USB devices, while
Cinch [3] separates the trusted USB host controller and
untrusted USB devices into two QEMU-KVMs, between
which a gateway is used to apply policies on USB pack-
ets. By mitigating the need for additional components
for standard operation, be believe that USBFILTER is bet-
ter suited for adoption within operating system kernels.

USBFILTER protects the host machine from malicious
USB devices, but there are solutions as well for exploring
the protection of devices from malicious hosts. USB fin-
gerprinting [6] establishes the host machine identity us-
ing USB devices, while Kells [8] protects the USB stor-
age device by attesting the host machine integrity.

Wang and Stavrou [47] suggest that a “USB firewall”
might protect against exploitation attacks but do not dis-
cuss the complexities of how such a mechanism could be
designed or implemented.

8 Conclusion

USB attacks rely on hosts automatically authorizing any
physically-attached device. Attackers can discreetly con-
nect unknown and unauthorized interfaces, causing de-
vice drivers to be automatically loaded and allowing ma-
licious devices access to the host. In this paper, we pre-
vent unauthorized devices from accessing a host with
USBFILTER, the first packet-level access control system
for USB. Through tracing each packet back to its associ-
ated process, our system can successfully block unautho-
rized interfaces and restrict access to devices by process.
With a default deny policy for new devices, administra-
tors can restrict connection of unknown devices using
granular identifiers such as serial number. Our experi-
ments test USBFILTER using a range of I/O benchmarks
and find that it introduces minimal overhead. The re-
sult is a host that is unresponsive to attacks that may try

to discreetly introduce unknown functionality via USB
while maintaining high performance.

Acknowledgements
This work is supported in part by the US National Sci-
ence Foundation under grant numbers CNS-1540217,
CNS-1540218 and CNS-1464088.

References
[1] TURNIPSCHOOL - NSA playset. http://www.

nsaplayset.org/turnipschool.

[2] J. P. Anderson. Computer Security Technology Planning Study.
Technical Report ESD-TR-73-51, Air Force Electronic Systems
Division, 1972.

[3] S. Angel, R. S. Wahby, M. Howald, J. B. Leners, M. Spilo,
Z. Sun, A. J. Blumberg, and M. Walfish. Defending against ma-
licious peripherals. arXiv preprint arXiv:1506.01449, 2015.

[4] J. Bang, B. Yoo, and S. Lee. Secure usb bypassing tool. digital
investigation, 7:S114–S120, 2010.

[5] Basemark, Inc. Basemark browsermark. http://web.
basemark.com/, 2015.

[6] A. Bates, R. Leonard, H. Pruse, K. R. B. Butler, and D. Lowd.
Leveraging USB to Establish Host Identity Using Commodity
Devices. In Proceedings of the 2014 Network and Distributed
System Security Symposium, NDSS ’14, February 2014.

[7] M. Brocker and S. Checkoway. iseeyou: Disabling the mac-
book webcam indicator led. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 337–352, 2014.

[8] K. R. B. Butler, S. E. McLaughlin, and P. D. McDaniel. Kells:
a protection framework for portable data. In Proceedings of the
26th Annual Computer Security Applications Conference, pages
231–240. ACM, 2010.

[9] A. Caudill and B. Wilson. Phison 2251-03 (2303) Custom
Firmware & Existing Firmware Patches (BadUSB). GitHub, 26,
Sept. 2014.

[10] Compaq, Hewlett-Packard, Intel, Microsoft, NEC, and Phillips.
Universal Serial Bus Specification, Revision 2.0, April 2000.

[11] D. Diaz et al. The GNU Prolog web site. http://gprolog.
org/.

[12] S. A. Diwan, S. Perumal, and A. J. Fatah. Complete security
package for USB thumb drive. Computer Engineering and Intel-
ligent Systems, 5(8):30–37, 2014.

[13] W. Enck, P. McDaniel, and T. Jaeger. PinUP: Pinning user
files to known applications. In Computer Security Applications
Conference, 2008. ACSAC 2008. Annual, pages 55–64. ieeex-
plore.ieee.org, Dec. 2008.

[14] J. Erdfelt and D. Drake. Libusb homepage. Online, http://www.
libusb. org.

[15] N. Falliere, L. O. Murchu, and E. Chien. W32. Stuxnet Dossier.
2011.

[16] U. I. Forum. Media Agnostic Universal Serial Bus Specification,
Release 1.0a, July 2015.

[17] D. Genkin, A. Shamir, and E. Tromer. RSA key extraction via
Low-Bandwidth acoustic cryptanalysis. In Advances in Cryptol-
ogy – CRYPTO 2014, Lecture Notes in Computer Science, pages
444–461. Springer Berlin Heidelberg, 17 Aug. 2014.

14

USENIX Association 25th USENIX Security Symposium 429

[18] Hak5. Episode 709: USB Rubber Ducky Part 1. http:
//hak5.org/episodes/episode-709, 2013.

[19] Hewlett-Packard, Intel, LSI, Microsoft, NEC, Samsung, and
ST-Ericsson. Wireless Universal Serial Bus Specification 1.1,
September 2010.

[20] B. Hicks, S. Rueda, L. St.Clair, T. Jaeger, and P. McDaniel.
A Logical Specification and Analysis for SELinux MLS Policy.
ACM Trans. Inf. Syst. Secur., 13(3):26:1–26:31, July 2010.

[21] T. Hirofuchi, E. Kawai, K. Fujikawa, and H. Sunahara. USB/IP-
A peripheral bus extension for device sharing over IP network. In
Proceedings of the annual conference on USENIX Annual Tech-
nical Conference, pages 42–42, 2005.

[22] IronKey, Inc. Access Enterprise. http://www.ironkey.
com/en-US/access-enterprise/, 2015.

[23] Jeremy Moskowitz. Managing hardware restrictions via group
policy. https://technet.microsoft.com/en-us/
magazine/2007.06.grouppolicy.aspx, 2007.

[24] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm:
the linux virtual machine monitor. In Proceedings of the Linux
symposium, volume 1, pages 225–230, 2007.

[25] T. Kojm. Clamav, 2004.

[26] Microsoft Windows Embedded 8.1 Industry. Usb filter (in-
dustry 8.1). https://msdn.microsoft.com/en-us/
library/dn449350(v=winembedded.82).aspx,
2014.

[27] K. Nohl and J. Lell. BadUSB–On accessories that turn evil. Black
Hat USA, 2014.

[28] D. V. Pham, M. N. Halgamuge, A. Syed, and P. Mendis. Opti-
mizing Windows Security Features to Block Malware and Hack
Tools on USB Storage Devices. In Progress in Electromagnetics
Research Symposium, 2010.

[29] PJRC. Teensy 3.1. https://www.pjrc.com/teensy/
teensy31.html, 2013.

[30] R. Russell. virtio: towards a de-facto standard for virtual i/o de-
vices. ACM SIGOPS Operating Systems Review, 42(5):95–103,
2008.

[31] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
Implementation of a TCG-based Integrity Measurement Archi-
tecture. Proceedings of the 13th USENIX Security Symposium,
2004.

[32] SANS Institute. Real World ARP Spoofing. http:
//pen-testing.sans.org/resources/papers/
gcih/real-world-arp-spoofing-105411, 2003.

[33] S. Schumilo, R. Spenneberg, and H. Schwartke. Don’t trust your
USB! How to find bugs in USB device drivers. In Blackhat Eu-
rope, Oct. 2014.

[34] S. Shin and G. Gu. Conficker and Beyond: A Large-scale Em-
pirical Study. In Proceedings of the 26th Annual Computer Secu-
rity Applications Conference, ACSAC ’10, pages 151–160, New
York, NY, USA, 2010. ACM.

[35] S. Smalley, C. Vance, and W. Salamon. Implementing SELinux
as a Linux security module. NAI Labs Report, 1:43, 2001.

[36] J. Stewart. Dns cache poisoning–the next generation, 2003.

[37] Sun Microsystems, Inc. and FSL at Stony Brook Univer-
sity. Filebench. http://filebench.sourceforge.
net/wiki/index.php/Main_Page, 2011.

[38] A. Tetmeyer and H. Saiedian. Security Threats and Mitigating
Risk for USB Devices. Technology and Society Magazine, IEEE,
29(4):44–49, winter 2010.

[39] The Information Assurance Mission at NSA. Defense against
Malware on Removable Media. https://www.nsa.gov/
ia/_files/factsheets/mitigation_monday_3.
pdf, 2007.

[40] The Netfilter Core Team. The Netfilter Project: Packet Mangling
for Linux 2.4. http://www.netfilter.org/, 1999.

[41] D. J. Tian, A. Bates, and K. Butler. Defending against malicious
USB firmware with GoodUSB. In Proceedings of the 31st An-
nual Computer Security Applications Conference, ACSAC 2015,
pages 261–270, New York, NY, USA, 2015. ACM.

[42] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs. Iperf:
The tcp/udp bandwidth measurement tool. htt p://dast. nlanr.
net/Projects, 2005.

[43] M. Tischer, Z. Durumeric, S. Foster, S. Duan, A. Mori,
E. Bursztein, and M. Bailey. Users Really Do Plug in USB Drives
They Find. In Proceedings of the 37th IEEE Symposium on Se-
curity and Privacy (S&P ’16), San Jose, California, USA, May
2016.

[44] USB Implementers Forum. USB-IF statement regarding
USB security. http://www.usb.org/press/USB-IF_
Statement_on_USB_Security_FINAL.pdf.

[45] A. Vahldiek-Oberwagner, E. Elnikety, A. Mehta, D. Garg, P. Dr-
uschel, R. Rodrigues, J. Gehrke, and A. Post. Guardat: Enforcing
data policies at the storage layer. In Proceedings of the Tenth Eu-
ropean Conference on Computer Systems, page 13. ACM, 2015.

[46] J. Walter. "Flame Attacks": Briefing and Indicators of Compro-
mise. McAfee Labs Report, May 2012.

[47] Z. Wang and A. Stavrou. Exploiting Smart-phone USB Connec-
tivity for Fun and Profit. In Proceedings of the 26th Annual Com-
puter Security Applications Conference, ACSAC ’10, 2010.

[48] B. Yang, D. Feng, Y. Qin, Y. Zhang, and W. Wang. TMSUI:
A Trust Management Scheme of USB Storage Devices for In-
dustrial Control Systems. Cryptology ePrint Archive, Report
2015/022, 2015. http://eprint.iacr.org/.

15

430 25th USENIX Security Symposium USENIX Association

Appendix

1 /*
2 * lbsw - A LUM kernel module
3 * used to block SCSI write command within USB packets
4 */
5 #include <linux/module.h>
6 #include <linux/usbfilter.h>
7 #include <scsi/scsi.h>
8
9 #define LUM_NAME "block_scsi_write"

10 #define LUM_SCSI_CMD_IDX 15
11
12 static struct usbfilter_lum lbsw;
13 static int lum_registered;
14
15 /*
16 * Define the filter function
17 * Return 1 if this is the target packet
18 * Otherwise 0
19 */
20 int lbsw_filter_urb(struct urb *urb)
21 {
22 char opcode;
23
24 /* Has to be an OUT packet */
25 if (usb_pipein(urb->pipe))
26 return 0;
27
28 /* Make sure the packet is large enough */
29 if (urb->transfer_buffer_length <= LUM_SCSI_CMD_IDX)
30 return 0;
31
32 /* Make sure the packet is not empty */
33 if (!urb->transfer_buffer)
34 return 0;
35
36 /* Get the SCSI cmd opcode */
37 opcode = ((char *)urb->transfer_buffer)[LUM_SCSI_CMD_IDX];
38
39 /* Current only handle WRITE_10 for Kingston */
40 switch (opcode) {
41 case WRITE_10:
42 return 1;
43 default:
44 break;
45 }
46
47 return 0;
48 }
49
50 static int __init lbsw_init(void)
51 {
52 pr_info("lbsw: Entering: %s\n", __func__);
53 snprintf(lbsw.name, USBFILTER_LUM_NAME_LEN, "%s", LUM_NAME);
54 lbsw.lum_filter_urb = lbsw_filter_urb;
55
56 /* Register this lum */
57 if (usbfilter_register_lum(&lbsw))
58 pr_err("lbsw: registering lum failed\n");
59 else
60 lum_registered = 1;
61
62 return 0;
63 }
64
65 static void __exit lbsw_exit(void)
66 {
67 pr_info("exiting lbsw module\n");
68 if (lum_registered)
69 usbfilter_deregister_lum(&lbsw);
70 }
71
72 module_init(lbsw_init);
73 module_exit(lbsw_exit);
74
75 MODULE_LICENSE("GPL");
76 MODULE_DESCRIPTION("lbsw module");
77 MODULE_AUTHOR("dtrump");

Figure 9: An example Linux USBFILTER Module that blocks writes to USB removable storage.

16

