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SYSTEMS ATTACKS AND DEFENSES 

I n September 2017, the world 
awoke to the news that Equifax, a 

consumer reporting agency and one 
of the pillars of the American credit 
system, fell prey to a data breach that 
led to the exposure of 147 million 
individuals’ personal information. 
For Equifax, the coming weeks would 
include high-profile executive resigna-
tions, a steep drop in its stock prices, 
and an infamously ill-conceived pub-
lic outreach effort; however, even-
tually the public’s attention turned 
elsewhere. After all, Equifax was 
just the latest in a seemingly endless 
parade of data breach victims that 
included commercial titans like Tar-
get and eBay, political campaigns like 
Hillary Clinton’s, and government 
agencies like the Office of Personnel 
Management. Today, the threat of the 
next data breach looms invisibly over 
every aspect of society.

The story of the Equifax intru-
sion, while frightening in scope, 
was run-of-the-mill at a technical 
level.9 In early March 2017, attack-
ers established an initial presence in 
the Equifax network by exploiting a 
recently identified vulnerability in a 
server that had not yet been patched. 
The vulnerable machine hosted a 
customer dispute portal that, while 
not offering much in the way of 
valuable data, allowed attackers to 

perform reconnaissance from inside 
of the Equifax network. Moving 
laterally through the network, the 
attackers would eventually come to 
access 51 Equifax databases, many 
of which included personally iden-
tifying consumer information. The 
attackers were ready to exfiltrate the 
data by May 2017, but data trans-
fers at this size would arouse suspi-
cion. Instead, the attackers slowly 
transmitted the data over a period 
of months by using 9,000 small data-
base queries. On day 76 of the data 
exfiltration, the behavior was finally 
noticed by system administrators, 
who then painstakingly recon-
structed this sequence of events by 
poring over months of system audit 
logs. Equifax did not begin its inter-
nal investigation until August, 145 
days since the initial break-in.

How could an intrusion of such 
a massive scale go unnoticed for so 
long? In fact, it is unlikely that the 
attacker’s actions went entirely unde-
tected—large enterprise networks 
are protected by a battery of security 
monitoring products that search for 
everything from malware in email 
attachments to suspicious network 
traffic. During their time in the Equi-
fax network, the attackers almost 
assuredly made some small misstep 
that resulted in a security alert being 
triggered. The problem is that this 
alert was just one in a sea of thousands 
of alerts that system administrators 

receive each week. A recent report by 
FireEye finds that most organizations 
in the United States receive upwards 
of tens of thousands of alerts per 
month; of these, only 48% are true 
alerts and only 4% of alerts are prop-
erly investigated.2 For companies like 
Equifax, this creates a problem that is 
known to the industry as threat-alert 
fatigue. Against such odds, attackers 
will inevitably triumph over the sys-
tem defenders.

While break-ins of this nature are 
inevitable, we see sources for hope 
and opportunity in the story of the 
Equifax breach. First among these 
is the matter of the attacker dwell 
time, which is the period of time 
the intruders spent on the system. 
To remain undetected, the attack-
ers required a period of 145 days to 
accomplish their objective. Had the 
defenders detected and responded to 
the threat more quickly, they would 
have mitigated or altogether avoided 
the consequences of the intrusion. 
Second, the audit logs collected at 
Equifax were sufficient to reconstruct 
the intrusion and accurately esti-
mate the extent of the damage. That 
audit logs are capable of providing 
such after-the-fact insight suggests 
untapped opportunities for protect-
ing systems during live attacks.

In this article, we describe the 
emergence of data provenance as 
a means of analyzing audit logs for 
system security, reporting on both 
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community results as well as our 
own experiences. Provenance has 
already demonstrated its tremen-
dous ability to provide transpar-
ency for security-sensitive events in 
systems. Through further research 
and integration, we argue that 
provenance-aware systems have 
the potential to effectively mitigate 
data breaches and other forms of 
advanced persistent threats.

What Is Data Provenance?
Data provenance describes the 
actions taken on a data object from 
its creation up to the present.1 In a 
provenance-aware system, a stream 
of individual audit events (e.g., pro-
cess A read from file 1) is incre-
mentally parsed into a dependency 
graph that encodes the entire history 
of the system’s execution. Data prove-
nance is of growing interest to secu-
rity researchers because it enables the 
causal analysis of suspicious events, 
providing transparency to large 
opaque systems. This event stream 
can be sourced by commodity audit-
ing frameworks, such as Linux Audit 
or Microsoft’s Event Tracing for Win-
dows. Once constructed, this graph can 
then be queried to answer questions 

about the present state of the sys-
tem. A back-trace query answers 
questions about the root cause of 
an event in the system by travers-
ing the inbound edges from a given 
vertex. Once a root cause for a sus-
picious behavior has been identified, 
a forward-trace query can iteratively 
traverse the outbound edges from a 
vertex to trace the full propagation of 
the attack (sometimes called prov-
enance). Critically, the results of these 
queries are not based on inferences of 
event correlation but, instead, encode 
the ground truth of the actual causal 
relationships between data objects.

Figure 1, an example provenance 
graph, depicts a phony ransom-
ware attack on a Redis in-memory 
database server that affected more 
than 18,000 machines. The remote 
attackers (represented by x.x.x.x) 
execute a Redis configuration com-
mand over an open Transmis-
sion Control Protocol port to erase 
the contents of the database, write 
their own secure socket shell (SSH) 
key to the database, and then use 
another configuration command 
to copy the database to the root 
account’s .ssh directory. In a sepa-
rate connection, the attackers then 

open an SSH session and leave a ran-
somware note in the root account’s 
home directory. When adminis-
trators discover the note, they can 
issue a back-trace query to attribute 
the note to a remote attacker. From 
there, they can use a forward-trace 
query to discover not only the 
attacker’s method of entry but also 
that the ransomware attack is, in fact, 
a hoax and their data were erased.

Limitations of 
Current Enterprise 
Security Products
There exists a rich ecosystem of secu-
rity products for monitoring suspi-
cious activity on hosts. Such tools 
have been especially effective at scal-
ing to support huge networks with 
relatively little administrative support, 
but current offerings are not without 
their limitations. The following are 
some issues with these products that 
could potentially be addressed by 
incorporating the historical context 
that data provenance provides.

Signature-Based 
Threat Detection
Antiv ir us  scanning has  been 
the first line of defense against 
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Figure 1. A provenance graph describing a ransomware attack on a Redis server. The attack provenance, shown in the 
bottom half of the graph, is highlighted in red.
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cyberattacks for many organizations 
over the last quarter of a century. It 
compares suspicious files’ similari-
ties against malware signature data 
sets to uncover threats in an orga-
nization. Antivirus software can 
only discover previously seen mal-
ware variants; it cannot detect the 
zero-day attacks or runtime com-
promises of legitimate software. 
Furthermore, attackers are intrin-
sically adaptive, regularly creating 
new variants.

Behavior-Based 
Threat Detection 
In contrast to antivirus scanning, 
behavior-based threat-detection 
searches the system for activities 
that match anomalous behaviors. 
Enterprise threat-detection prod-
ucts not only employ anomaly 
detection classifiers to identify vari-
ations from typical behavior but also 
match against common patterns of 
malicious activity that can be either 
procedurally derived or manu-
ally defined by experts. Whether 
based on actual anomaly detec-
tion or handcrafted heuristics, 
behavior-based threat-detection 
products are prone to high rates 
of false alerts. They typically con-
sider a limited window of each pro-
cess’ recent activity, not its entire 
historical context.

Security Indicator and 
Event Management 
Security Indicator and Event Man-
agement (SIEM) products pro-
vide an orchestration layer for the 
various security products that are 
employed by an organization. Due 
to the high volume of alerts gen-
erated by connected products, an 
important role of SIEM software is 
to manage alerts by providing aggre-
gation, deduplication, and correla-
tion services. However, SIEM does 
not address the general problem of 
false alerts, making existing prod-
ucts only a partial solution to the 
threat-alert fatigue problem.

Traditional Auditing and 
Forensic Investigation
When determining the root cause 
of a security alert, investigators ulti-
mately turn to audit logs as the defin-
itive ground truth of system events. 
Traditionally performed semimanu-
ally, data provenance automates the 
process of tracking dependencies 
across log entries, improving the 
time-to-insight of investigations. 
However, traditional auditing 
frameworks also suffer from sig-
nificant limitations. Among these is 
the dependency explosion prob-
lem.6 In long-running processes, 
each output event appears to be 
dependent on all prior input events 
from the operating system’s per-
spective. Early efforts to perform a 
graph-based analysis of audit events, 
such as King and Chen’s Back-
Tracker system,5 attempt to rein in 
the dependency explosion problem 
by considering only the window of 
time that the attacker was active 
on the system. However, this still 
leads to false dependencies even 
during short timespans and is com-
pletely impractical for Equifax’s 
145-day attack window. Further-
more, audit logs grow rapidly in 
size and are dominated by records 
that describe the typical activity of 
the system. This imposes a tremen-
dous storage and analysis burden 
when, in fact, only a small percent-
age of the logs will ever be relevant 
to an investigation.

What accounts for the capabil-
ity gap between commercial offer-
ings and the provenance-based 
techniques being proposed in the 
literature? One reason is that com-
mercial products have not histori-
cally retained audit data at the fidelity 
required for data-provenance tracing. 
Consider two examples: 1) Microsoft 
Azure Sentinel offers graph-based 
explanations of threat alerts but 
only captures audit data sufficient 
to visualize the attack from the net-
work perspective (i.e., host events 
are opaque),10 and 2) Lacework’s 

tracing offers a partial view into the 
host but monitors only process events 
and coarse-grained network flows, 
potentially overlooking vital interpro-
cess dependencies like file activity.11 
In the remainder of this article, we 
will describe how current research is 
shifting the cost-benefit proposition 
of fine-grained auditing at scale.

Developing Practical 
Provenance-Based 
Security Tools

Automating Forensic Audits
When security alerts appear, foren-
sic audits are the most reliable 
means of detecting the presence of a 
true attack; however, unfortunately, 
to conduct them they require one or 
more dedicated person hours from 
an expert analyst. In a recent study, 
we asked whether or not forensic 
audits could be partially automated 
to improve the responsiveness to 
security alerts. These efforts led to 
the development of the NoDoze 
system,4 an automated mechanism 
for triaging security alerts that uses 
provenance analysis to differentiate 
false alerts from true attacks.

A demonstrative example of 
NoDoze in action is provided in 
Figure 2. This graph describes a 
web-browsing session in which two 
unusual activities occur, causing an 
existing threat-detection system to 
fire two security alerts. The first alert 
(on the left side of the graph) was 
caused by a user who downloaded a 
malicious 7-Zip attachment, leading 
to a ransomware attack. However, 
the second alert (on the right side 
of the graph) is not truly malicious; 
it was caused by a system admin-
istrator who downloaded and ran 
a set of diagnostic tools on the 
user’s workstation.

W hen these  t wo a ler ts  are 
fired, NoDoze issues a back-trace 
and forward-trace query on the 
event that caused the alert. To 
each event in the resulting graph, 
it then assigns a raw anomaly score 
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based on the relative frequency of 
that event in the overall network. 
Finally, NoDoze calculates an aggre-
gate anomaly score for the alert by 
conducting network diffusion on 
the scores in the graph and uses this 
aggregate score to sort the alerts. We 
deployed a NoDoze prototype on an 
actual 200-host enterprise network 
hosted by our collaborators at NEC 
Laboratories. When tested against 
a battery of more than 350 security 
alerts, we found that NoDoze effec-
tively prioritizes true attacks over 
false alerts; in fact, the discrimina-
tive power of NoDoze was such that 
84% of alerts could be immediately 
dismissed as false alarms. We believe 
that this first effort only scratches 
the surface of the potential for auto-
mated provenance-based forensics.

Leveraging Application 
Semantics
Provenance tracing at the operating- 
system level establishes connectivity 
between processes but is limited by the 
fact that many key pieces of forensic 
evidence exist only within application 
semantics. For example, the specific 
customer data stolen in the Equifax 
breach existed as database records 
that were opaque to kernel auditing 
frameworks. We are encouraged by 
the development of minimally inva-
sive approaches to integrate applica-
tion semantics into provenance-aware 
systems. An early effort in this space, 
Lee et al.’s BEEP,6 provided a specific 
solution to the dependency explosion 
problem by decomposing the audit 
trail of a long-running application 
into individual units of work, allow-
ing for more precise attack tracing. 
More recently, instrumentation-free 
methods for multilog analysis have 
emerged that provide tighter integra-
tion between system and application 
logs. An example of this approach is 
Pei et al.’s HERCULE system,8 which 
identifies correlated events in differ-
ent applications’ log entries based on 
a social network analysis, enabling 
malicious communities of events to be 

identified. Bridging the semantic gap 
between software layers will be vital 
to the next generation of threat inves-
tigation tools.

Optimizing Audit Logs 
for Cyber Forensics
In the past several years, a rich 
body of literature has emerged 
that focuses on improving the 
cost–benefit ratio of system audit-
ing. This work notes an interesting 
observation—auditing systems 
often collect far more information 
than is necessary or relevant to a 
threat investigation, such that many 
event records can be removed 
without the loss of forensic valid-
ity. A canonical example of such 
optimizations, presented in Lee 
et al.’s LogGC system,7 concerns 
audit records that describe tem-
porary files. Processes often create 
temporary files during execution 
that are deleted without ever inter-
acting with another process. While 
the records of temporary file activ-
ity may be useful for performance 
profiling, they do not convey infor-
mation flow between processes 
and can, therefore, be erased. In 
addition to systems like LogGC 
that eliminate specific sources of 
inefficiency, other tools, includ-
ing our own Winnower system,3 
attempt to create a generic learning 
mechanism to remove semantically 
redundant log events.

D riven by the relentless nature 
of modern attackers, meth-

ods that leverage data provenance 
to defend systems are growing in 
popularity. As researchers are only 
just beginning to consider the 
meaningful automation of prov-
enance analysis as well as the inte-
gration of multiple streams of audit 
data, we anticipate that this will 
continue to be an innovative space 
in security research. By simplifying 
the threat investigation and dramat-
ically improving defender response 

times, data provenance is poised to 
put an end to data breaches in the 
years to come. 
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