Detecting Co-Residency with Active Traffic Analysis Techniques

Adam Bates

Ben Mood

Joe Pletcher

Hannah Pruse

Masoud Valafar

Kevin Butler

University of Oregon OSIRIS Laboratory

CCSW'12, Raleigh, NC, USA 19 October 2012

To the Cloud?

"An attacker can often place his or her instance on the same physical machine as a target instance... creating the ability of a malicious instance to utilize side channels to learn information about coresident instances."

Co-Resident Watermarking

This work...

- Investigates cloud side channels at the hardware level via the network interface.
- Introduces co-resident watermarking, an attack that breaks VM isolation via a network timing channel.
- **Evaluates** methodology to confirm its efficacy in the adverse compute cloud conditions and configurations.
- **Demonstrates** further side-channel applications: covert communication, traffic profiling of victim VMs.

Design: Threat Model

 Cloud Provider: patched all internal cross-VM side channels (e.g. L2 Cache).

 Adversary: manipulates own (legitimate) instances to find the victim's instances.

Victim: business that runs a web-facing service.

Design: Attack Model

Design: Attack Model

Design: Attack Model

Design: Watermark Encoding

Design: Watermark Encoding

Evaluation: Goals

Determine if co-resident watermarking works...

- independent of hypervisor or network/system load
- in production cloud environments
- in adverse cloud topographies
- on advanced network devices (SR-IOV)

Do any conditions create false positives or negatives?

Evaluation: Participants

System configuration for local laboratory testbed.

Evaluation: Hypervisors

Packet Arrivals Per Interval

Xen

Evaluation: Hypervisors

Packet Arrivals Per Interval

Xen

Evaluation: Hypervisors

Packet Arrivals Per Interval

VMWare ESXi

Evaluation: Network State

Packet Arrivals Per Interval

Xen, Coast-to-Coast Trial

Evaluation: System Load

1 Extra Guest

2 Extra Guests

3 Extra Guests

Trial	Length	$KS_{+d,-d}$	p-val	Result
SERVER				
& Flooder	2.5~sec	0.99	0.01	Co-Res
Add 1 Guest	3.75~sec	0.78	0.05	Co-Res
Add 2 GUESTS	3.75~sec	0.91	0.01	Co-Res
Add 3 GUESTS	10~sec	0.49	0.05	Co-Res

Evaluation: 3rd Party Clouds

System configuration for ACISS and Futuregrid clouds.

Evaluation: 3rd Party Clouds

Packet Arrivals Per Interval

_

ACISS (KVM)

Futuregrid (Xen)

• Co-resident watermarking is a viable attack in production cloud environments.

Evaluation: Cloud Topography

Configuration where target and adversary share first hop.

Evaluation: Cloud Topography

ACISS (KVM)

• Co-resident Watermarking does not produce false positives under adverse topographies.

Evaluation: SR-IOV Hardware

Xen, SR-IOV NIC

• Intel 10GbE Controller, SR-IOV enabled (ixgbe).

 Exposed virtual PCI devices that we bound to each VM.

 Pass-through technology improved the effectiveness of co-resident watermarking!

Analysis

- So what else we can do?
 - Covert Multicast
 - Load Measurement

Analysis: Covert Multicast

First 10 seconds of transmission of a 2048-bit key.

Analysis: Load Measurement

Flooder & Server Throughput as Server load increases.

Analysis: Load Measurement

Flooder & Server Throughput as System load increases.

Countermeasures

- Underutilization
 - Dedicated network paths for each VM
 - Overprovision NIC's
 - Cap VM bandwidth
- <u>L2 Cache defenses</u>: equate to time-division multiplexing, another form of underutilization.
- Randomization: adverse effects on TCP performance.

Future Work

 Implement an invisible network flow watermarking scheme for co-resident VMs.

 Use cross-VM network flows to profile internal conditions of cloud provider.

Repeat trials successfully on Amazon EC2.

Conclusion

- Co-resident watermarking exploits network flows to break virtual machine isolation.
 - I0 seconds or less for an accurate decision (Heuristic).
 - Effective independent of hypervisor, hardware, cloud state.
 - Works in production cloud environments.
- This preliminary work on the cross-VM network flow side channel underscores the difficulty of providing isolation in compute clouds.

Questions?

Adam Bates

amb@cs.uoregon.edu