
Defending Against Malicious USB Firmware with GoodUSB

Dave (Jing) Tian
University of Florida
daveti@ufl.edu

Adam Bates
University of Florida

adammbates@ufl.edu

Kevin Butler
University of Florida
butler@ufl.edu

ABSTRACT
USB attacks are becoming more sophisticated. Rather than using
USB devices solely as a delivery mechanism for host-side exploits,
attackers are targeting the USB stack itself, embedding malicious
code in device firmware to covertly request additional USB inter-
faces, providing unacknowledged and malicious functionality that
lies outside the apparent purpose of the device. This allows for
attacks such as BadUSB, where a USB storage device with mali-
cious firmware is capable of covertly acting as a keyboard as well,
allowing it to inject malicious scripts into the host machine. We
observe that the root cause of such attacks is that the USB Stack ex-
poses a set of unrestricted device privileges and note that the most
reliable information about a device’s capabilities comes from the
end user’s expectation of the device’s functionality. We design and
implement GoodUSB, a mediation architecture for the Linux USB
Stack. We defend against BadUSB attacks by enforcing permis-
sions based on user expectations of device functionality. GoodUSB
includes a security image component to simplify use, and a honey-
pot mechanism for observing suspicious USB activities. GoodUSB
introduces only 5.2% performance overhead compared to the un-
modified Linux USB subsystem. It is an important step forward in
defending against USB attacks and towards allowing the safe de-
ployment of USB devices in the enterprise.

Keywords
USB, BadUSB, Linux Kernel

1. INTRODUCTION
The USB interface is widely acknowledged as a dangerous vec-

tor for attack. In many organizations, use of USB flash drives is
restricted or outright banned [1] due to their potential for propa-
gating malicious software. USB storage has served as a delivery
mechanism by the world’s most nefarious malware families [36,
38], and even in state-sponsored attacks [12]. In response, antivirus
software is becoming increasingly adept at scanning USB storage
for malware [26]. Recently an even more insidious form of USB-
based attack has emerged. In the BadUSB attack [7, 25], a mali-
cious USB device registers as multiple device types, allowing the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’15, December 07-11, 2015, Los Angeles, CA, USA
© 2015 ACM. ISBN 978-1-4503-3682-6/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2818000.2818040

device to take covert actions on the host. For example, a USB flash
drive could register itself as both a storage device and a keyboard,
enabling the ability to inject malicious scripts. This functionality
is present in the Rubber Ducky penetration test tool [16], which is
now available for public sale. Unfortunately, because USB device
firmware cannot be scanned by the host, antivirus software is not
positioned to detect or defend against this attack. This problem is
not just limited to dubious flash drives: any device that communi-
cates over USB is susceptible to this attack.

We observe that the root cause of the BadUSB attack is a lack of
access control within the enumeration phase of the USB protocol.
Devices are free to request that any number of device drivers be
loaded on their behalf. However, existing USB security solutions,
such as whitelisting individual devices by their serial number, are
not adequate when considering malicious firmware that can make
spurious claims about its identity during device enumeration. Stan-
dard USB devices are too simplistic to reliably authenticate, and
secure devices with signed firmware that could permit authentica-
tion are rare, leaving it unclear how to defend ourselves against this
new attack.

Our key insight in this work is that the most reliable source of
information about a device’s identity is the end user’s expectation
of the device’s functionality. For example, when a user plugs in a
flash drive, they are aware that they have not plugged in a keyboard.
We use this insight to design and implement GoodUSB, a host-side
defense for operating systems against BadUSB attacks. GoodUSB
features a graphical interface that prompts users to describe their
devices, and a kernel enforcement mechanism that denies access
to features that fall outside of that description. Our system also
features a security image system to simplify device administration
using security pictures, and a novel USB Honeypot mechanism for
profiling BadUSB attacks. GoodUSB even provides an added layer
of protection for “secure” devices with signed firmware, ensuring
that BadUSB attacks will still fail even if the manufacturer’s sign-
ing key falls into the wrong hands.

Our contributions are summarized as follows:

• Enforce Permissions for USB Devices. We design and im-
plement a permission model and mediator for the enumera-
tion phase of the USB protocol. Our solution features an in-
tuitive graphical interface that simplifies user participation,
a Linux kernel enforcement mechanism, and a virtualized
honeypot that automatically redirects and profiles potentially
malicious devices. To our knowledge, our USB Honeypot is
the first to appear in the literature that is capable of observing
BadUSB attacks.

• Demonstrate Robustness Against BadUSB Attacks. We
test GoodUSB against Rubber Ducky [16] and Teensy [31],

http://dx.doi.org/10.1145/2818000.2818040

Host Device
SetAddress(n)

ACK

GetDescriptor(Device)

MNF: Kingston, Product: Flash Drive

GetDescriptor(Interface)

Storage

Human Interface

Figure 1: During USB enumeration, the host discovers the device
and the drivers (interfaces) that need to be loaded in order for it to
operate. In the BadUSB attack, marked by a red dotted line, the
device requests additional, unexpected interfaces that allow it to
perform covert activities on the system.

two of the widely available penetration and development tools
that are capable of executing BadUSB attacks. We demon-
strate our system’s ability to block the actions of these de-
vices’ firmware. We also demonstrate GoodUSB’s compati-
bility with a variety of benign devices, including flash drives,
headsets, and smart phones.

• Mitigate Performance Overhead. Our results show that
GoodUSB imposes only a 5.2% performance overhead (7
milliseconds) compared to enumeration in an unmodified Linux
USB subsystem, with our device class identifier routine only
adding 9 microseconds to the enumeration process.

Section 2 of the paper provides background on the pertinent as-
pects of the USB specification as well as on USB attacks. In Sec-
tion 3, we identify the key challenges in securing the USB proto-
col against BadUSB, and propose our solutions. In Section 4 we
present the full design and implementation of the GoodUSB archi-
tecture. Section 5 features our evaluation. We discuss common
questions about GoodUSB, and future work in Section 6. In Sec-
tion 7 we provide an overview of related work, and in Section 8 we
conclude.

2. BACKGROUND
The Universal Serial Bus (USB) specification defines protocols

and hardware used in communication between a host and a device
across a serial bus [8]. In the enumeration phase of the USB pro-
tocol, a USB host controller residing within the host operating sys-
tem initiates a series of queries to discover information about the
device’s functionality. A simplified example of device enumera-
tion for a USB flash drive is shown in Figure 1. After enumeration,
the host loads USB kernel drivers (Interfaces) that allow the de-
vice to operate; USB devices are often complex, serving multiple
functions, and therefore a single device can request one to many in-
terfaces from the host. While some of the more sophisticated USB
devices, notably smart phones, often require a custom interface,
there are also hundreds of single-purpose interfaces that are de-
fined in the specification [8]. For compatibility reasons, most USB
devices usually use these standard interfaces whenever possible.

2.1 When USB Goes Bad

USB devices are widely acknowledged as a dangerous vector for
attacks, particular with regards to storage devices. Flash drives not
only permit the exfiltration of sensitive data, they also facilitate the
propagation of viruses and other malware. Due to the popularity of
auto-run features in operating systems, malicious payloads carried
on USB storage can at times be installed without user knowledge
or consent. This makes flash drives particularly devastating when
used in social engineering attacks, where the compromise of a host
can be as simple as tricking the user into plugging in a USB key. As
a result of these threats, enterprises often restrict or ban the use of
USB storage devices, even going so far as to super glue USB ports
shut [1], depriving employees of the benefits of portable storage
media.

Recently, a more insidious form of USB-based attack has emerged
– rather than placing malicious code within storage, malware is
embedded into the firmware itself. In a class of attacks broadly re-
ferred to as BadUSB, malicious devices covertly request additional
interfaces during enumeration, allowing them to attack the host.
An example of Nohl et al.’s BadUSB attack is denoted by the dot-
ted line in Figure 1, in which the firmware of a flash storage device
is rewritten to register as both a storage and human interface device
(HID), allowing it to inject keystrokes that open a shell and down-
load malware from the Internet [7, 25]. Similar functionality is
provided by the Rubber Ducky penetration test tool and the Teensy
USB development board, which are sold online [16, 31]. Unlike
traditional USB attacks, in BadUSB, the host cannot use antivirus
software to detect the presence of a malicious payload within the
device. Moreover, with BadUSB, any device is a potential attack
vector, not just storage devices.

The use of signed firmware as a defense against BadUSB is noted
by both Nohl et al. [25] as well as Imation’s IronKey team [19].
Indeed, signed firmware dramatically increases the complexity of
performing a BadUSB attack. This is because sophisticated USB
devices, such as IronKey, are able to measure device firmware and
verify its signature before permitting it to load. However, signed
firmware is not a panacea against powerful state-sponsored adver-
saries, who through coercion or outright attack may be able to ob-
tain device manufacturers’ signing keys. In fact, obtaining legit-
imate signatures for malicious device drivers was an integral step
in the success of the Stuxnet attack [12]. Even when considering
“secure” USB devices, there is still a need for a defensive layer to
protect from BadUSB attacks.

3. DESIGN
In this section, we identify the key challenges to the design of a

security mechanism for USB enumeration. In considering BadUSB,
we observe that the root cause of this threat is that USB drivers
effectively represent a set of system privileges, and yet the USB
protocol does not provide a means of restricting devices’ access to
these privileges. Therefore, solving the BadUSB problem requires
the introduction of a security layer to the enumeration phase of the
USB protocol. We discover that a number of unique challenges ex-
ist due to the plug-and-play nature of USB that prevents traditional
access control mechanisms from being suitable in this environment,
and subsequently propose solutions to each of these obstacles. The
technical details of our solution can be found in Section 4.

3.1 Threat Model & Assumptions
The goal of our system is to provide a defense against BadUSB

attacks in a security-conscious enterprise environment where myr-
iad different USB devices are used each day. Due to the sensi-
tive nature of such organizations, they have already deployed ad-
vanced USB malware scanning kiosks that effectively detect mali-

Objects (Interfaces) USB Mediator

Host
ControllerHID

Driver

Device
Identifier

PORT 1
Policy
Engine

Policy

Storage
Driver

Audio
Driver

PORT 2

Subjects (Devices)

Figure 2: GoodUSB introduces a mediator in the USB stack of the
host. The mediator restricts USB devices (subjects) access to USB
drivers (objects) according to policy.

cious storage payloads [26, 28]; hence, traditional USB attacks are
not a concern. We assume the use of standard commodity devices
that lack advanced security features such as signed firmware. While
signed firmware can be employed to defeat BadUSB, such features
are costly, and to our knowledge are only available for USB storage
devices [18]. We assume that employees in our operating environ-
ment are required to participate in a security orientation.

We consider an Advanced Persistent Threat attack that is at-
tempting to further its presence in the enterprise through distribut-
ing USB devices with malicious firmware (i.e., BadUSB). The ma-
licious devices have entered the physical premises via supply-chain
compromise or social engineering. We conservatively assume that
these devices are subject to byzantine faults during participation
in the USB protocol. The device may make any claim about its
identity during enumeration, and can attempt to confuse or evade
the device identification mechanism that our system introduces; for
example, the device can lie about its manufacturer and product ID.
The device may also alter its responses each time it enumerates.
Moreover, the adversary may have changed the physical casing of
the device so that its functionality is not apparent through visible
inspection.

Finally, we make the following assumptions about the state of the
host system on which our security mechanism is being deployed.
We assume the host is in a correct state prior to connecting to any
USB devices. We also assume that the host’s USB software stack is
correct, and does not contain any exploitable software flaws. Con-
ceivably, a BadUSB device could send malformed messages that
could exploit a software vulnerability (e.g., buffer overflow) in the
host controller or driver. This is an important problem in itself, and
fuzzing techniques have been proposed elsewhere in the literature
to detect such faults [35]; however, it is orthogonal to our goal of
addressing a fundamental vulnerability in the USB protocol.

3.2 Mediating USB Interfaces & Drivers
The fundamental vulnerability in USB that gives rise to BadUSB

attacks is that arbitrary USB interfaces can be enumerated, com-
prising a set of unrestricted privileges provided to a USB device.
In response, we propose the introduction of a permission validation
mechanism that authorizes device’s access requests to individual
USB interfaces. The proposed mediator is shown at a high level
in Figure 2. During the USB enumeration phase, a Device Iden-
tifier authenticates the connected device and provides an subject
ID. When the host queries the device for its interfaces, the device’s
response represents an access request. The subject ID and access
request are passed into a Policy Engine. Based on the Policy, the
engine then individually authorizes the requested interfaces prior to
loading the drivers on behalf of the device.

While restricting device activity at the driver granularity is a sig-
nificant improvement over the status quo, it would also be desir-
able to restrict device actions at finer granularities. For example, a
device that registers as a Human Interface Device (HID) but only

User Expectations
Policy

USB
 Mediator

Storage
Driver

If correct, load driver…

USB
Honeypot

VM

If incorrect, redirect
device to honeypot…

Device Claims

Figure 3: GoodUSB cannot trust what the device claims to be dur-
ing enumeration; however, the device’s claims can be verified by
checking them against the user’s expectation as to what the de-
vice is and how it should operate. If verification fails, the device
is flagged as potentially malicious, and is redirected to a honeypot
virtual machine.

makes use of the Volume Up and Volume Down keys is danger-
ously over-capable; while use of those two keys alone is harmless,
with the full HID driver the device can effectively take any action
on the host. Unfortunately, this requires instrumentation of indi-
vidual USB drivers, so it is not a general solution to the BadUSB
problem. However, our mediator must be extensible, supporting
security-enhanced USB drivers as they are made available. In Sec-
tion 4, we instrument the general USB HID driver to provide access
to volume controls only, preventing a USB headset from running in
an over-capable state, such as running as a keyboard.

3.3 Identifying USB devices
We now describe the Device Identifier component of our USB

mediator. A fundamental requirement of any access control system
is authenticating the subject. The device descriptor passed by the
USB device during enumeration contains information such as the
manufacturer, product, and a unique serial number for the device.
However, the problem of identifying the device is actually much
more complicated. As we assume devices are subject to byzantine
faults, we cannot trust any message that we receive from the de-
vice during enumeration. If an adversary has rewritten a device’s
firmware, it can change its response during any message in the enu-
meration, including lying about its manufacturer and model num-
ber. When the device’s reported descriptor and even its physical
appearance are potentially false, how can we identify the device?

We assert that the most reliable source of information of a de-
vice’s identity is the end user’s expectation of the device’s func-
tionality. The purposes of most USB interfaces are intuitive, espe-
cially in an environment where all users are computer literate and
have been instructed on security procedures. We propose that the
simplest means of enforcing least privilege on USB devices is to
ask the users what they expect their device to do, having the user
serve as a verifier for the claims that the device makes during enu-
meration. This verification concept is visualized in Figure 3. When
a device first connects to the host, the user is notified of the con-
nection through a graphical dialog box on the host. The dialog
prompts the user to select the features (i.e., interfaces) that they
wish to enable on the device. Note that, since the host is trusted,
this constitutes a trusted path from the host controller to the user.
The user’s settings are stored in a policy database, with each record
being a tuple <Subject ID, Authorized Interfaces>. The subject ID
includes Manufacture, Product, Serial Number, etc.1

On subsequent connections, one of three scenarios may occur:

1 The record format and subject ID are simplified here for better
illustration.

1. The device’s claim is consistent with the prior connection.

2. The device makes a different claim that matches an entry in
the device database.

3. The device makes a different claim that does not match an
entry in the device database.

In Scenarios (1) and (2), the user will be presented with an entry
from the database and asked whether the information is correct. In
Case (1), the user confirms that the information is correct, and enu-
meration is permitted to continue for the authorized interfaces. In
Case (2), the user reports that the information is incorrect, and the
device is flagged as potentially malicious. In Case (3), the user is
presented with the initial device registration dialog again. However,
since the user knows that the device has already been registered, he
or she can report the anomaly and the device will be flagged as
potentially malicious.

Given the above description, readers may find themselves un-
derstandably wary of the burden that our system places on the end
user. However, given the capabilities of our attacker, and the lack
of a core root of trust for measuring USB firmware, we assert that
our solution is the only option for deterministically authenticating
devices, which is a prerequisite to defending against BadUSB. In
Section 4, we present the technical details of the GoodUSB graph-
ical interface, which makes use of visual cues to dramatically sim-
plify the process of administration for normal users with limited
technical background.

3.4 Profiling Malicious USB Devices
Once a device has been flagged as potentially malicious, what

actions can we take? Unfortunately, it is not possible to block the
device from further interactions with the system. On subsequent
connections, the device can make different claims about its identity,
so we have no means of blacklisting it. We determined the most
valuable action that our system could take is to redirect the device
to a virtualized honeypot, allowing the device to be observed while
simultaneously protecting the host.

Within the virtual honeypot, the actions taken by the device can
be profiled, which could prove valuable in the ensuing forensic in-
vestigation. The honeypot’s interactions with other system compo-
nents is shown in Figure 3. We identify the following types of infor-
mation as valuable to an investigator: device information after enu-
meration, device drivers loaded for the device, and all communica-
tion at the USB layer, including all keystrokes and all IP packets
sent/received over the network. This information could potentially
be passed to high-level forensic tools for detailed inspection and
an intrusion detection system (IDS) which would provide a means
of remediation in the event that a device is incorrectly flagged as
malicious.

4. GOODUSB IMPLEMENTATION
In this section, we present GoodUSB, our fully-implemented se-

curity architecture for the Linux USB stack. While our BadUSB
defense is general enough to apply to any operating system, we
have implemented GoodUSB for Ubuntu 14.04 LTS (kernel ver-
sion 3.13.11). The full architecture of GoodUSB, shown in Figure
4, introduces four components. First, a user space daemon handles
the graphical interface and policy management, and also includes
the logic for the USB mediator. A second user space component,
a KVM honeypot, profiles potentially malicious USB devices. In
kernel space, we introduce a device class identifier, as well as a
limited USB HID driver that secures human interface devices by
restraining them to particular kinds of keystrokes. The kernel hub

GoodUSB Daemon
(gud)

Policy Engine

Kernel Hub Thread

Host Ctrl 0

User Space

Kernel Space
VirtIONetlink

Kernel Virtual Machine

Host Ctrl 1 Host Ctrl 2

P
O
R
T
1

P
O
R
T
2

P
O
R
T
8

P
O
R
T
7

P
O
R
T
6

P
O
R
T
3

P
O
R
T
4

P
O
R
T
5

USB
Interface
Drivers

Limited
HID

Graphical Interface
Device Database

Device Class Identifier Host Ctrl Passthrough

USB Honeypot
(HoneyUSB)

QEMU KVM
USB Monitor
USB Profiler

Figure 4: The GoodUSB architecture. Components that are intro-
duced by GoodUSB are colored orange and bordered by dashed
lines. The kernel hub thread is also modified to interoperate with
our system components.

thread is minimally modified to interoperate with the components
of the GoodUSB architecture.

4.1 User Space Daemon
Most of GoodUSB’s functions are handled by a user space dae-

mon (a.k.a. gud). Shown in Figure 4, gud includes three subsys-
tems: a policy engine that implements the USB mediator logic, a
graphical interface that features a security picture recognition sys-
tem, and a device database that associates a device’s claimed iden-
tity and functionality with the user’s expectation of the device. To
allow gud to interact with the rest of the USB stack, we use the new
netlink socket created in the kernel hub thread (a.k.a. khub),
which communicates with gud to perform USB device detection,
enumeration and driver matching/loading. The subsystems of gud
are detailed below.
Policy Engine. The policy engine is responsible for determining
whether the requested interfaces of a newly connected USB de-
vice match the user’s expectation of device functionality, and sub-
sequently enforcing that expectation. It notifies the kernel space
components to block the loading of particular interfaces, or to redi-
rect the device to a honeypot when it is potentially malicious.

To increase the users’ experience, the policy engine maintains
a mapping between low-level interface types and a high-level sum-
mary of common USB devices. Some example mappings are shown
below:2

USB_DEV_STORAGE=> USB_CLASS_MASS_STORAGE
USB_CLASS_CSCID
USB_CLASS_VENDOR_SPEC

USB_DEV_CELLPHONE=> USB_CLASS_MASS_STORAGE
USB_CLASS_VENDOR_SPEC

USB_DEV_HEADSET=> USB_CLASS_AUDIO
USB_CLASS_HID (LIMITED)
USB_CLASS_VENDOR_SPEC

USB_DEV_CHARGER=> {0}

Reading the above mappings, the policy states that storage devices
can only register the following interfaces: MASS_STORAGE (for
flash drives), CSCID (for smart cards) and/or VENDOR_SPEC in-
terfaces. Storage devices cannot register the HID interface, pre-
venting the most widely recognized form of BadUSB attacks. In
addition to the AUDIO interface, certain USB headsets sometimes
2There are 17 mappings in total. Only 4 are presented here.

a: Device registration screen

b: Recognized device notification c: Security picture screen

Figure 5: Screenshots from GoodUSB user interface.

require the HID interface for volume control. GoodUSB introduces
a limited HID interface that restricts the permissible keystrokes of
non-keyboard USB devices, which prevents malicious HID devices
from taking control of the system. Another interesting example is a
CHARGER device, which does not contain any interfaces. As a mat-
ter of fact, these chargers should never be detected as USB devices,
because the charging procedure does not need to involve any USB
layer communication. Through enforcing this permission mapping,
GoodUSB is able to defend against BadUSB attacks. Note that
vendor specific interfaces are allowed in most devices. This is a
tradeoff between security and usability, as devices that require a
vendor specific driver are likely to break if denied this interface.
We discuss this limitation in Section 6.

Based on GoodUSB’s configuration, the policy engine can oper-
ate in either basic or advanced modes. In basic mode, the graphical
interface features high-level device summaries, as shown in Figure
5a, and the user selects a single option that maps to low-level in-
terfaces. In advanced mode, the graphical interface instead shows
the low-level interfaces, and allows the user to make multiple selec-
tions. The advanced mode allows the user to exercise finer control
over device functionalities, and also supports devices that require
uncommon interface sets.
Graphical Interface. When a USB device connects to the host,
the policy engine loads one of several dialog boxes depending on
whether the device is recognized from a previous session. If a de-
vice is not recognized, GoodUSB prompts the user with the device
registration box shown in Figure 5a. 3 The text field at the top of
the box allows the user to confirm that the device’s claimed iden-
tity (i.e., Manufacturer and Product) match the device that was just
plugged into the host. The remainder of the box provides a set of
device descriptions for the user to select. Each device description
maps to a set of permissible interfaces.

Immediately after the device registration screen, the user is asked

3A user study of the prompt’s effectiveness is out of the scope of
the paper.

to select a security image to associate with the device, as shown in
Figure 5c. Security images are widely used as an anti-phishing
mechanism by banking websites [21]. In GoodUSB, the secu-
rity image component is introduced to simplify device administra-
tion, and also provides a visual cue for the presence of a poten-
tial BadUSB attack. Recall that BadUSB devices can spoof any
message in their device descriptors; an adversary who is aware of
our GoodUSB defense may therefore attempt to masquerade as a
known device that has the desired interface, e.g., the HID interface.

When GoodUSB recognizes a device, it is either a legitimate oc-
currence or evidence of an attack. The dialog box for recognized
devices is shown in Figure 5b. Here, the option for selecting a de-
vice type has been removed. The user can verify the device through
either reading the descriptive text or checking that the presented se-
curity image is correctly associated with the device. If the presented
information is incorrect, the device is flagged as potentially mali-
cious and is redirected to the USB honeypot. Otherwise the user
approves the device and driver loading continues.
Device Database. Once gud obtains user expectations and a secu-
rity picture is selected, this information is recorded alongside the
output of the Device Class Identifier in a database. The database is
implemented as a binary file, and is synchronized with kernel space
whenever a new USB device is plugged in. When the machine is
rebooted, gud re-transmits the device database to kernel space via
the netlink socket, making sure that previously classified devices
will be recognized on subsequent connections. If needed, users can
also clear the database in gud, which provides a clean base in the
kernel space as well, once the machine is restarted.

4.2 USB Honeypot
In the event of a potential attack, administrators will undertake

forensic investigation to determine the nature of the attack and
identify likely culprits. To observe the activities of potentially mali-
cious devices, GoodUSB features a honeypot virtual machine mech-
anism. While honeypots for malicious USB devices have been
previously proposed by Poeplau and Gassen [32], we realized that
these systems are actually incapable of observing the BadUSB at-
tack vector. The reason is that their system emulates a device, as
opposed to a host, and attempts to catch host-based malware as it
infects the device. BadUSB is not a host-to-device attack, but rather
a device-to-host attack. In BadUSB, once the host is compromised,
the adversary will have to rely on other attack vectors to extend
their presence in the devices, as it is very difficult (if not impossi-
ble) to infect the firmware of USB devices simply by having them
connect to an infected host. Therefore, it is necessary to design a
new USB honeypot framework that is suited to observing BadUSB.

Our system, HoneyUSB, is a QEMU-KVM virtualized Linux
machine containing multiple device profiling services. HoneyUSB
supports two modes of device observation/profiling. In the first,
HoneyUSB reserves an entire USB controller device on the host,
and the host controller device (HCD) is hoisted directly into KVM
using pass-through technology. The advantage of this profiling
mode is that the potentially infected device never operates directly
within the host OS, and is effectively physically separated from
the host machine. Using this profiling mode is helpful when out-
of-band knowledge has been used to flag a device as potentially
malicious, e.g., it was found lying in the company parking lot. In
a second mode, gud automatically redirects devices to HoneyUSB
after the user flags them as potentially malicious.

The honeypot VM, which also runs Ubuntu Linux, is precon-
figured as follows. We enabled usbmon in the VM’s kernel [42],
which acts as a general USB layer monitor, capturing all the USB
packets transmitted by the device. In the user space, we created a

USB profiling application, usbpro, which aggregates device in-
formation from sysfs, lsusb, usb-devices and device ac-
tivities from usbmon and tcpdump. Moreover, a new udev rule
with high priority is associated with usbpro, guaranteeing that
usbpro is loaded prior to device enumeration. Thus, the report
generated by usbpro is an exhaustive description of the device’s
reported information as well as the actions taken by its associ-
ated drivers. Excerpts of a report for a HID device generated by
usbpro can be found in the evaluation section.

HoneyUSB also contains an instrumented version of the GIO
Virtual Filesystem (gvfs), the user-space driver used by USB-
enabled cellphones such as Android. We have extended gvfs to
collect file-level data provenance, constituting a detailed descrip-
tion of the read and write operations performed by the device. Cur-
rently, file-level provenance has been added into the MTP backend
to support Android, which means usbpro is able to record all the
file-based I/O operations happened in the Android phone operated
in MTP mode.

4.3 Device Class Identifier
The Device Class Identifier is a kernel space component that

summarizes the claims made by the device during enumeration.
This summary contains both the device descriptor fields that are
presented to the user in Figure 5, and all the descriptors transmitted
by the device during enumeration, plus the current active configura-
tion. This includes the device information and requested interfaces
in the active configuration, and also other configuration supported
but not used by the device. A SHA1 digest is then computed based
on the summary 4.

The digest is used as a device identifier in both the gud device
database, allowing gud to recognize devices that were previously
registered, and the kernel device database, keeping it synchronized
with the former. After the USB enumeration, the kernel knows all
the interfaces requested by the device, as well as the SHA1 digest.
If the digest does not match a prior entry from the kernel device
database, the kernel notifies gud to present the device registration
screen to the user (Fig. 5a). The user’s response is transmitted to
the kernel by gud before the requested interface drivers are loaded.
After receiving instructions from gud, the kernel first creates an en-
try for the newly registered device in its device database, if the de-
vice is to be enabled. The permitted drivers are then loaded, while
other requested drivers are ignored, thus ensuring that the device
cannot interact with the system in ways that were not expected by
the user.

When there is a match in the kernel device database, meaning
this device is recognized as a known one, the kernel notifies gud
and asks for permission to enable this device (Fig. 5b). The re-
quested drivers are not loaded until after the user has approved the
device. If the user disapproves the device, the kernel disallows any
interfaces requested by the device by not loading any drivers and
gud helps redirect the device into the USB honeypot.

4.4 Limited HID Driver
The GoodUSB architecture is designed primarily to enforce least

privilege on USB device at the granularity of device drivers. Un-
fortunately, devices that have been approved for a particular inter-
face are free to operate with the full capabilities of the associated
driver. In Section 3.2, we mentioned that this is particularly trou-
bling for the the Human Interface Device (HID) interface, which

4We assume that the digest could be forged in our threat model
and we allow that happen in GoodUSB. Therefore, there is no need
to pursue the best secure hashing function and SHA1 is usually
optimized for better performance in the kernel.

usbpro HID analyzer started:
===========================
_F2__x_t_erm_ENTER
_p_w_d_ENTER
_i_d_ENTER
_c_a_t_SPACE/etc/passwd_ENTER
_
===========================
usbpro HID analyzer done

Figure 6: GoodUSB’s profiling tool, HoneyUSB, captures injected
keystrokes from a USB storage device maliciously exposing a key-
board (HID) interface.

allows a BadUSB device to take nearly any action on the system
[25]. While GoodUSB allows users to disable the HID interface of
the USB device completely, there are cases where the HID interface
is legal and a functioning part of the device, e.g., the HID interface
of a USB headset controlling the volume of the internal speaker.

To mitigate the danger of HID-based BadUSB attacks, we have
instrumented a copy of the Linux USB HID driver to restrict the
number of characters that can be injected by USB devices. The
Linux USB HID driver is widely used by many USB devices be-
cause it bridges the USB and Input layers in the kernel. As USB Re-
quests Blocks (URBs) are a common abstraction for USB packets
within the kernel, we instrumented the USB HID driver at the URB
level, which saved us from having to perform packet inspection.
We modified the original USB HID driver to restrict the kinds of
URBs the driver can report to the higher-level input driver. The cur-
rent limited USB HID driver supports only 3 different keystrokes,
corresponding to volume increase, volume decrease, and the mute
button, as are commonly found on USB headsets.

Exercising control of device activity above the interface level
requires instrumenting the various USB drivers to support access
control, like what grsecurity [27] does, which is tedious, potentially
error-prone and volatile to driver changes and new drivers. How-
ever, our limited USB HID driver demonstrates that our approach
can dramatically reduce the scope of BadUSB attacks by limiting
the general USB HID driver without touching any specific drivers.

5. EVALUATION
We now evaluate the GoodUSB architecture. We first provide

a security case study in Section 5.1, where GoodUSB is tested
against a variety of malicious and benign devices. In Section 5.2,
we provide a performance evaluation of our system.

5.1 Attack Analysis
The authors of BadUSB have published a proof-of-concept im-

plementation online [7] with reverse engineered firmware for a par-
ticular USB storage device that adds a malicious HID interface.
Rather than use this highly specific instance of BadUSB, we use
several popular penetration and development tools to launch a va-
riety of attacks in order to demonstrate the range of defenses pro-
vided by GoodUSB.

5.1.1 HID-Based Attacks
To demonstrate GoodUSB’s resistance to attacks from exposing

human interface device (HID) interfaces (e.g., exposing keyboard
functionality), we use the Rubber Ducky penetration testing device.
The Ducky provides a user-friendly scripting language enabling
different HID-based attacks. We load a basic Ubuntu terminal com-
mand script [17] into the Ducky, which opens an xterm window
once the Ducky is plugged into the victim’s computer. It then is-

sues several commands, including checking the /etc/passwd
file. The first time we plug in the Ducky, GoodUSB pops up the
device registration GUI, asking users for their expectations of the
device’s functionality. Since the Ducky appears to be a USB thumb
drive, we choose “USB Storage” and register it with a security im-
age selected from a list, as shown in Figure 4c. The attack fails
because GoodUSB does not allow USB HID interfaces for “USB
Storage” devices. However, the Ducky continues to function in its
capacity as a storage device.

When the Ducky is plugged in again, GoodUSB recognizes it
and shows the correct security picture. Rather than enabling this de-
vice as a USB storage device, we click “This is NOT my device!”,
which redirects the Ducky into HoneyUSB. Using the usbpro
utility, we can easily see all the information and activities of the
ducky, including reconstructing its injected keystrokes, as shown
in Figure 6.

5.1.2 Other USB Interfaces and Composite Devices
We demonstrate more robust interface attacks using a Teensy

USB development board [20]. Unlike the Rubber Ducky, Teensy
is able to simulate not only USB HID devices but also USB Serial
devices, USB MIDI devices and others. Moreover, Teensy is also
able to combine different interfaces together to make a compos-
ite device, which is how devices such as USB headsets and smart-
phones present themselves to hosts.

First, we consider a scenario where a Teensy presents a USB
storage form factor but is acting as a serial device to transmit mes-
sages (e.g., shell scripts) to a trojan residing on the host machine.
To accomplish this, we program a Teensy 3.1 board to expose a se-
rial terminal at /dev/ttyACM0. When the board is plugged in, it
attempts to communicate over the serial interface to the trojan lis-
tening on the tty interface. Based on its form factor, however, the
user registers the Teensy as a USB storage device with GoodUSB.
Consequently, the serial interface is not exposed and the trojan can-
not receive its commands.

We next use the Teensy to demonstrate GoodUSB’s ability to
handle composite devices. We program the Teensy to simultane-
ously register itself as a keyboard, a joystick, a mouse and a serial
port. Each interface is controlled by a separate task on the board;
for example, one job instructs the mouse to move around the screen,
while an independent task controls the joystick. With the help of
the advanced mode of gud, GoodUSB displays all the interfaces
requested by the Teensy before any drivers are loaded. This allows
the user to whitelist individual interfaces; for example, we can en-
able mouse functionality while disabling all other input types. The
result is that GoodUSB is able to enforce least privilege over the
composite device by disabling other undesired functionalities re-
quested by the device.

5.1.3 Smartphone-Based USB Attacks
The authors of BadUSB released a shell script called BadAndroid

that emulates a DNS-based Man in the Middle (MitM) attack on the
host machine using a rooted Android phone5. The basic function-
ality required by this attack is USB Tethering, which allows a USB
device to present itself as an Ethernet card to the host. In this ex-
periment, we connect a Nexus S phone to GoodUSB and register
it as “USB Cellphone.” GoodUSB only permits the smartphone to
use the mass storage and vendor-specific interfaces. At first, Nexus
S only registers the storage interface. However, when we enable
USB Tethering on the phone, GoodUSB detects the new interface
5The malicious phone sends the host false DNS information, e.g.,
the IP address of an attacker-controlled server for a banking web
site to steal credit card information.

Action Min Avg Max Mdev Overhead

Normal Enumeration 140266 140424 141001 126 N/A

GoodUSB Steps:
Device Identification 8.0 9.0 10.0 0.2 N/A
First Enumeration 146308 147675 149336 609 5.2%
Second Enumeration 146306 147463 149268 558 5.0%
Honeypot Redirect 248951 262057 295444 6842 N/A

Table 1: Microbenchmarking GoodUSB operation (in microsec-
onds) averaged over 20 runs.

request and pops up the registration window again, asking for the
user’s permission. Only if the user explicitly selects “USB Cell-
phone with Tethering” will the network interface be available. If
the standard “USB Cellphone” description is again selected, teth-
ering over USB, and the potential DNS MitM attack, is thwarted.

Alternately, when GoodUSB presented a second device regis-
tration window, we could have flagged the device as potentially
malicious. The Nexus S would have then been redirected to Hon-
eyUSB and been granted permission to register the USB Tether-
ing interface, where usbpro would have observed the IP packets
sent and received by the phone. If there is a legitimate need for
additional interfaces such as the network interface for tethering,
GoodUSB can provide this support through the advanced interface
menu or through adding an additional device-to-interface mapping
(e.g., tethering-enabled phones) on the basic menu.

5.2 Performance Analysis
The utility of GoodUSB depends on its imposing minimal over-

head on the host. Below, we provide a micro benchmark based
on the different operations of GoodUSB. Our host machine is a
Lenovo ThinkCentre desktop, with a 3GHz Intel(R) Core(TM)2
Duo CPU (2 cores) and 4 GB of RAM. HoneyUSB, which exe-
cutes inside a KVM virtual guest, runs on the same host, with 2
virtual CPUs and 2GB memory. Both are running Ubuntu Linux
14.04 LTS with kernel 3.13. The testing USB device is a Logitech
ClearChat USB headset H390, containing 4 interfaces (3 audio +
1 HID). To precisely measure the overhead imposed by the core
system rather than user interactions, we bypass the measurement
of the GUI component by hard-coding messages to the kernel from
the user daemon. All measurements are based on 20 enumerations
using same device plugged into the same USB port on the test ma-
chine.

Table 1 provides the results of our measurements. Normal Enu-
meration displays the time required to add a new USB device by
the original khub thread in the kernel without GoodUSB enabled.
Device Identification shows the overhead of our device class iden-
tifier, which measures all the descriptors from the USB device and
the current configuration using SHA1. The average overhead for
this step 9 us, which is almost negligible compared to the whole
USB enumeration, which takes about 140 ms. First Enumeration
demonstrates the case when GoodUSB is enabled where the de-
vice is plugged in for the first time (within the user space, both the
device registration and the security picture selection GUIs would
be popped up). Compared to the original device adding proce-
dure, GoodUSB only introduces 5.2% overhead. Second Enumer-
ation shows the case where the device is recognized by GoodUSB
(within the user space, only the device recognition GUI would show
up). Compared with the original procedure, GoodUSB only presents
5.0% overhead. Finally, we measure the overhead of HoneyUSB
redirection in Honeypot Redirect. Note that HoneyUSB is already
started in our evaluation and it usually takes 5–10 seconds to start it
in our host machine. Once HoneyUSB is running, the whole redi-

rection needs only 262 ms to allow the device to re-enumerate.
We performed similar tests with a Kingston 2GB USB thumb

drive and a Nexus S phone with/without GoodUSB. The enumer-
ation times are comparable - the overhead is 5.1% for the USB
storage and 7.3% for the phone. The phone appears to have larger
overhead because it enumerates more quickly in our testing, which
is 2275 us in average without GoodUSB enabled. Because USB
is a master-slave protocol, the device’s ability to modify the speed
of enumeration is limited. The speed is dictated by USB 2.0 bus
speeds and the processing delay on the host. The enumeration of
a headset is slower than a flash drive because it is registering more
interfaces, which causes more processing on the host and more data
to be sent over the USB interface. GoodUSB’s overhead is thus vir-
tually negligible during the USB device enumeration phase. There
is no impact at all on regular device operations (e.g., file transfer,
mouse movement, etc.) after the enumeration phase.

6. DISCUSSION
Does selectively disabling interfaces break USB devices?

We tested GoodUSB against a number of devices found in our
laboratory and commonly used, including USB keyboards, mouses,
flash drives, headsets, wireless adaptors, webcams, smart phones
and chargers, and can anecdotally report that selective authoriza-
tion of interfaces does not prevent benign USB devices from per-
forming the authorized functions in most cases. For example, we
tested GoodUSB against a Logitech USB headset that requested
interfaces for Audio (Input), Audio (Output), and Human Interface
Device (HID). Each feature was able to work in isolation when the
others were disabled, e.g., a headset with HID interface disabled.
This is an exciting potential application for GoodUSB, as some en-
terprise environments may wish to selective disable certain features
(e.g., the microphone found in a headset) for fear that they be mis-
used by malware. We expect that compatibility issues will arise
in instances where USB device developers make unexpected use of
interfaces. One example may be the yubikey [41], an authentication
aid that is both a USB smart card and a HID keyboard. While there
always exist some USB quirks and a serious USB device survey
is needed to tell how diverse the combination of interfaces is, for
these unusual cases, GoodUSB can be easily extended to support
these special devices by adding new device-to-interface mappings.

Can GoodUSB authenticate individual USB device units?
Because devices can lie about their identity, GoodUSB relaxes

the concept of authentication, instead seeking to identify classes of
devices at the granularity of the product type under the same man-
ufacturer. This is sufficient for the goals of our system, which only
seeks to restrict the interface set available to certain kinds of de-
vices; all USB devices of the same model should require access to
the same interfaces.

Can GoodUSB protect against malicious smart phones?
Smart phones are troublesome for GoodUSB due to the use of

the vendor-specific interface. To minimize compatibility issues,
GoodUSB allows the vendor-specific interface to be loaded for most
kinds of devices. Many smart phones, including Android and iPhone
devices, request the vendor-specific interface during enumeration.
Because the phone’s actions are ultimately dependent on a user
space driver, GoodUSB cannot make a determination as to the de-
vice’s potential actions until after the device has loaded. To provide
some confidence as to the intent of the device, we recommend plug-
ging smart phones into HoneyUSB via passthrough, where usbpro
is able to profile the phone in the sandbox.

To demonstrate, we profiled the Nexus 5 and iPhone 3GS in Hon-

eyUSB. usbpro reported that Nexus 5 used the vendor-specific
interface to load the usbfs kernel driver. Different from other
USB kernel drivers, the only functionality provided by usbfs is
to expose the device node to user space on the host and to enable
file I/O operations. From there, Nexus 5 loads gvfsd-mtp to per-
form the Media Transfer Protocol (MTP) over USB connections.
The iPhone 3GS uses two vendor-specific interfaces for loading the
usbfs and ipheth kernel drivers. In user space, the usbmuxd
driver allows data synchronization between the host machine and
iOS device. This serves to demonstrate that HoneyUSB can be
used independently of the rest of our system to profile potentially
malicious smart phones.

Can GoodUSB be used as IDS?
Though GoodUSB rests on the final decision of users, it is pos-

sible to extend GoodUSB into an IDS for USB devcies, assisting
users to identify anomalous combination of interfaces (storage +
keyboard), as well as anomalous device behaviors (delayed reg-
istration of a keyboard, for instance). For the former, GoodUSB
can pop up an warning window, notifying the policy violation of
the device to the user, rather than disabling the anomalous inter-
face silently. For the later, usbpro could be used to learn the
normal behaviors of devices, and to detect abnormal behaviors in
the future. Machine learning based techniques using timing side
channels [2] can also be integrated into GoodUSB, helping detect
abnormal behaviors of devices early in the USB enumeration phase.

Is GoodUSB easily deployable?
GoodUSB was designed with consideration for users with lim-

ited technical knowledge. The GoodUSB daemon provides a basic
mode to abstract away low-level interface decisions, simplifying
device administration for regular users. Additionally, the daemon’s
security image component speeds up the process of authorizing de-
vices on subsequent connections.

One obstacle to the deployment of GoodUSB is the requirement
of a custom kernel. Instrumenting the kernel is necessary to in-
troduce a security mechanism into the USB stack. To ease the
installation and configuration of GoodUSB, we will be releasing
GoodUSB in multiple formats upon publication. In addition to a
kernel patch, we will also publish a prebuilt x86-64 GoodUSB ker-
nel image for Ubuntu Linux users. Additionally, we will provide a
preconfigured GoodUSB KVM image, as well as a separate KVM
image for HoneyUSB, in order to make deployment of GoodUSB
feasible and straightforward.

6.1 Future Work
GoodUSB is a first step in hardening the USB stack from sophis-

ticated attacks. In future work, we intend to move up the stack to
explore USB drivers. While best practices in software engineering
encourage drivers to support as many devices as possible, this in-
herently violates the principle of least privilege, providing a device
with more abilities than it actually needs. We plan to perform a
driver analysis that explores this problem in depth. We also intend
to analyze some of the more popular user space drivers, such as
usbmuxd, and instrument them to provide file-level provenance
so their actions on the system may be better understood.

We also hope to add more features to the GoodUSB architecture.
One such feature is to let the profiling phase of HoneyUSB inform
the available device-to-interface mappings in the gud graphical in-
terface, thereby automating the process of adding new mappings
to the policy engine. We also hope to use HoneyUSB profiles
to improve GoodUSB’s ability to predict the purpose of vendor-
specific interface requests, allowing gud to display the actual ex-

pected driver to be loaded to the user.

7. RELATED WORK
Awareness of the USB attack vector has increased notably due

to its presence in high-profile malware families including Stuxnet
[12], Conficker [36], and Flame [38]. Myriad proposals have ap-
peared in the literature to protect against using USB storage devices
for exfiltration and installing malicious payloads [11, 30, 37, 40].
Schumilo et al. present a USB fuzzer that can be used to harden
drivers against exploitable software flaws, which improves security
at the driver layer by improving the internal logic of device-specific
drivers [35]. These security mechanisms operate at higher layers of
the USB stack (i.e., the specific driver layer), which is insufficient
to defend against BadUSB attacks.

Very few existing security solutions are positioned to defend
against malicious USB firmware. Yang et al. propose a trust man-
agement scheme that mediates use of USB storage devices in in-
dustrial control systems [40]. While they consider the BadUSB
attack, they conclude that they cannot prevent malicious storage
device from requesting additional interfaces. Secure USB devices
such as IronKey [18] can prevent BadUSB attacks by using signed
firmware, provided that the device manufacturer is trusted and the
signing key is kept safe. Unfortunately, these devices are costly,
and have not overtaken traditional USB devices in most enterprise
environments. Moreover, some organizations may be concerned
about state-sponsored attacks in which the device manufacturer has
been coerced into sharing their signing keys. GoodUSB provides
additional assurance that even “Secure” USB devices are behaving
correctly.

GoodUSB leverages virtual honeypots, which have also appeared
elsewhere in the literature. Provos’ Honeyd system provides in-
sight into network attacks by deploying virtual machines honeypots
in arbitrary routing topologies [33]. Poeplau and Gassen present
Ghost, a honeypot for USB storage [32]. The aim of Ghost is to de-
tect the propagation of malicious USB storage payloads, which it
accomplishes through emulating a storage device that periodically
connects to potentially infected machines. In contrast, GoodUSB’s
honeypot emulates a USB host, using hardware virtualization to
hoist the entire USB controller into the virtual machine. Because it
emulates the device and not the host, Ghost cannot detect BadUSB
attacks. The GoodUSB honeypot provides a more general archi-
tecture that can profile malicious USB storage payloads as well
as BadUSB attacks that covertly request privileged interfaces; this
comes at an increased computational resource cost, as an entire host
needs to be emulated instead of just a USB device.

A vital component of the GoodUSB architecture is the ability to
identify devices that have previously connected to the host. De-
vice identification is an especially difficult problem due to the un-
availability of trusted hardware to bootstrap host-to-device attes-
tation. As an alternative to trusted hardware, device fingerprinting
schemes attempt to leverage innate characteristics (e.g., power, tim-
ing) of the device in order to establish identity. Fingerprint schemes
for 802.11 devices have been proposed that leverage passive [13]
and active [23] timing analysis, as well as radio frequency metrics
[24, 4]. Gerdes et al. identify Ethernet cards through analysis of the
analog signal of network packets [14]. Gupta et al. fingerprint elec-
tronic devices using the electromagnetic interference generated by
switch mode power supplies [15]. Daneve et al. fingerprint RFID
cards through extraction of the modulation shape and spectral fea-
tures of the signals emitted by the transponder [9]. While we con-
sidered incorporating a fingerprint mechanism into GoodUSB, it
is unclear if these approachs could be successfuly applied to USB
Devices. Power analysis may be frustrated by the fact that the de-

vice is powered by the host. These fingerprint schemes also make
the assumption of a benign target that is not attempting to evade
detection; in our threat model, the adversary could attempt to mod-
ify its fingerprint to avoid detection, thereby complicating timing
analysis. As a result of these pitfalls, GoodUSB does not attempt
to perform device fingerprinting. Instead, it attempts to catch a ma-
licious device in its lie by checking its requested interfaces against
the user’s expectations.

Unlike host-to-device identification, a variety of proposals lever-
age the USB interface to perform device-to-host identification. Wang
et al. [39] and Davis [10] independently observe that variations in
protocol implementations leak information about the host operat-
ing system; however, these schemes would not be effective against
an active fingerprint target, as demonstrated by Bates et al. [2].
Timing analysis of USB packets has also proven to be an effective
means of identifying the host operating system [22], and even of-
fers limited ability to differentiate between instances of identically-
deployed machines [2]. Butler et al. present a mechanism for host
verification that performs TPM attestations over the USB interface
[6]; however, trusted hardware is a not a panacea due to the threat
of cuckoo attacks [29].

GoodUSB’s user notifications contain a security image compo-
nent. Graphical password systems were recently surveyed by Bid-
dle et al. [3]. Passfaces is a recognition-based system for general
authentication in which, during login, users choose a pre-selected
face from a panel of candidate faces [5]. The Story system is
also recognition-based; users select a portfolio of random images,
and during login they must select their images in the correct se-
quence from amidst a portfolio of decoys. To prevent a BadUSB
device from masquerading as another device, GoodUSB uses a
recognition-based system to succinctly represent the claimed de-
vice identity. Unlike full-fledged graphical password systems, Good-
USB’s security images serve to provide an intuitive binding be-
tween a device and its requested interfaces. As a result, password
guessing attacks are not a concern. Unfortunately, security images
have been shown to be of limited utility on banking websites [34].
The strength of our security image component relies on the assump-
tion that employees in an enterprise environment that have under-
gone security training will be more capable of identifying suspi-
cious activity compared to typical banking customers.

8. CONCLUSION
USB attacks are becoming more sophisticated, affecting all classes

of USB device instead of just storage. To date, there has been no
practical defensive solution against BadUSB attacks, which expose
the fundamental vulnerabilities of unconstrained privileges in USB
devices. In this work, we present the design and implementation
of GoodUSB, which enforces permissions of devices by encoding
user expectations into USB driver loading. GoodUSB provides a
security image component for better user experience and a honey-
pot mechanism for profiling suspicious USB devices. Outside of
delays associated with user input, GoodUSB’s performance over-
head during USB enumeration is just 5.2% (about 7 milliseconds).
With this new method of constraining privilege of USB devices,
users and administrators now possess a powerful new tool for se-
curing their computers, permitting the re-introduction of these valu-
able devices back into the enterprise. The code and data used for
GoodUSB as well as modified Linux distributions are available at
our website, www.florida-security.org.

9. ACKNOWLEDGEMENTS
This work is supported in part by the US National Science Foun-

www.florida-security.org

dation under grant numbers CNS-1540217 and CNS-1540218, as
well as by the Florida Cyber Consortium.

10. REFERENCES
[1] M. Al-Zarouni. The Reality of Risks from Consented Use of

USB Devices. School of Computer and Information Science,
Edith Cowan University, Perth, Western Australia, 2006.

[2] A. Bates, R. Leonard, H. Pruse, K. R. Butler, and D. Lowd.
Leveraging USB to Establish Host Identity Using
Commodity Devices. In Proceedings of the 2014 Network
and Distributed System Security Symposium, NDSS ’14,
February 2014.

[3] R. Biddle, S. Chiasson, and P. Van Oorschot. Graphical
Passwords: Learning from the First Twelve Years. ACM
Comput. Surv., 44(4):19:1–19:41, Sept. 2012.

[4] V. Brik, S. Banerjee, M. Gruteser, and S. Oh. Wireless
Device Identification with Radiometric Signatures. In
Proceedings of the 14th ACM International Conference on
Mobile Computing and Networking, MobiCom ’08, Sept.
2008.

[5] S. Brostoff and M. Sasse. Are Passfaces More Usable Than
Passwords? A Field Trial Investigation. In People and
Computers XIV – Usability or Else!, pages 405–424.
Springer London, 2000.

[6] K. Butler, S. McLaughlin, and P. McDaniel. Kells: A
Protection Framework for Portable Data. In Proceedings of
the 26th Annual Computer Security Applications Conference,
ACSAC ’10, Austin, TX, USA, Dec. 2010.

[7] A. Caudill and B. Wilson. Phison 2251-03 (2303) Custom
Firmware & Existing Firmware Patches (BadUSB). GitHub,
26, Sept. 2014.

[8] Compaq, Hewlett-Packard, Intel, Microsoft, NEC, and
Phillips. Universal Serial Bus Specification, Revision 2.0,
April 2000.

[9] B. Danev, T. S. Heydt-Benjamin, and S. Capkun.
Physical-layer Identification of RFID Devices. In
Proceedings of the 18th USENIX Security Symposium, Aug.
2009.

[10] A. Davis. Revealing Embedded Fingerprints: Deriving
Intelligence from USB Stack Interactions. In Blackhat USA,
July 2013.

[11] S. A. Diwan, S. Perumal, and A. J. Fatah. Complete security
package for USB thumb drive. Computer Engineering and
Intelligent Systems, 5(8):30–37, 2014.

[12] N. Falliere, L. O. Murchu, and E. Chien. W32. Stuxnet
Dossier. 2011.

[13] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. V. Randwyk,
and D. Sicker. Passive Data Link Layer 802.11 Wireless
Device Driver Fingerprinting. In Proceedings of the 15th
USENIX Security Symposium, Aug. 2006.

[14] R. M. Gerdes, T. E. Daniels, M. Mina, and S. F. Russell.
Device Identification via Analog Signal Fingerprinting: A
Matched Filter Approach. In Proceedings of the 2006
Network and Distributed System Security Symposium, NDSS
’06, Feb. 2006.

[15] S. Gupta, M. S. Reynolds, and S. N. Patel. ElectriSense:
Single-point Sensing Using EMI for Electrical Event
Detection and Classification in the Home. In Proceedings of
the 12th ACM International Conference on Ubiquitous
Computing, UBICOMP ’10, Sept. 2010.

[16] Hak5. Episode 709: USB Rubber Ducky Part 1.
http://hak5.org/episodes/episode-709, 2013.

[17] Hak5. USB Rubber Ducky Payloads. https://github.com/
hak5darren/USB-Rubber-Ducky/wiki/Payloads, 2013.

[18] Imation. Ironkey. http://www.ironkey.com/en-US/resources/,
2013.

[19] Imation. IronKey Secure USB Devices Protect Against
BadUSB Malware. http://www.ironkey.com/en-US/
solutions/protect-against-badusb.html, 2014.

[20] S. Kamkar. USBdriveby. http://samy.pl/usbdriveby/, 2014.
[21] J. Lee, L. Bauer, and M. Mazurek. The effectiveness of

security images in internet banking. Internet Computing,
IEEE, 19(1):54–62, Jan 2015.

[22] L. Letaw, J. Pletcher, and K. Butler. Host Identification via
USB Fingerprinting. In IEEE Sixth International Workshop
on Systematic Approaches to Digital Forensic Engineering,
SADFE ’11, May 2011.

[23] D. Loh, C. Y. Cho, C. P. Tan, and R. S. Lee. Identifying
Unique Devices Through Wireless Fingerprinting. In
Proceedings of the 1st ACM Conference on Wireless Network
Security, WiSec ’08, Apr. 2008.

[24] N. T. Nguyen, G. Zheng, Z. Han, and R. Zheng. Device
Fingerprinting to Enhance Wireless Security Using
Nonparametric Bayesian Method. In Proceedings of the 30th
IEEE International Conference on Computer
Communications, INFOCOM ’11, Apr. 2011.

[25] K. Nohl and J. Lehl. BadUSB – On Accessories That Turn
Evil. In Blackhat USA, Aug. 2014.

[26] OLEA Kiosks, Inc. Malware Scrubbing Cyber Security
Kiosk. http://www.olea.com/product/cyber-security-kiosk/,
2015.

[27] Open Source Security,Inc. grsecurity. https://grsecurity.net/,
2013.

[28] OPSWAT. Metascan.
https://www.opswat.com/products/metascan, 2013.

[29] B. Parno. Bootstrapping Trust in a "Trusted" Platform. In
Proceedings of the 3rd USENIX Workshop on Hot Topics in
Security, HotSec ’08, Aug. 2008.

[30] D. V. Pham, M. N. Halgamuge, A. Syed, and P. Mendis.
Optimizing Windows Security Features to Block Malware
and Hack Tools on USB Storage Devices. In Progress in
Electromagnetics Research Symposium, 2010.

[31] PJRC. Teensy 3.1.
https://www.pjrc.com/teensy/teensy31.html, 2013.

[32] S. Poeplau and J. Gassen. A Honeypot for Arbitrary Malware
on USB Storage Devices. In 7th International Conference on
Risk and Security of Internet and Systems, CRiSIS ’12, Oct.
2012.

[33] N. Provos. A Virtual Honeypot Framework. In Proceedings
of the 13th USENIX Security Symposium, Aug. 2004.

[34] S. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The
Emperor’s New Security Indicators. In 28th IEE Symposium
on Security and Privacy, SP’07, May 2007.

[35] S. Schumilo, R. Spenneberg, and H. Schwartke. Don’t trust
your USB! How to find bugs in USB device drivers. In
Blackhat Europe, Oct. 2014.

[36] S. Shin and G. Gu. Conficker and Beyond: A Large-scale
Empirical Study. In Proceedings of the 26th Annual
Computer Security Applications Conference, ACSAC ’10,
pages 151–160, New York, NY, USA, 2010. ACM.

[37] A. Tetmeyer and H. Saiedian. Security Threats and
Mitigating Risk for USB Devices. Technology and Society
Magazine, IEEE, 29(4):44–49, winter 2010.

[38] J. Walter. "Flame Attacks": Briefing and Indicators of
Compromise. McAfee Labs Report, May 2012.

[39] Z. Wang and A. Stavrou. Exploiting Smart-phone USB
Connectivity for Fun and Profit. In Proceedings of the 26th
Annual Computer Security Applications Conference, ACSAC
’10, 2010.

[40] B. Yang, D. Feng, Y. Qin, Y. Zhang, and W. Wang. TMSUI:
A Trust Management Scheme of USB Storage Devices for
Industrial Control Systems. Cryptology ePrint Archive,
Report 2015/022, 2015. http://eprint.iacr.org/.

[41] yubico. yubikey.
https://www.yubico.com/products/yubikey-hardware/, 2015.

[42] P. Zaitcev. The usbmon: USB Monitoring Framework.
http://people.redhat.com/zaitcev/linux/OLS05_zaitcev.pdf,
2005.

http://hak5.org/episodes/episode-709
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payloads
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payloads
http://www.ironkey.com/en-US/resources/
http://www.ironkey.com/en-US/solutions/protect-against-badusb.html
http://www.ironkey.com/en-US/solutions/protect-against-badusb.html
http://samy.pl/usbdriveby/
http://www.olea.com/product/cyber-security-kiosk/
https://grsecurity.net/
https://www.opswat.com/products/metascan
https://www.pjrc.com/teensy/teensy31.html
http://eprint.iacr.org/
https://www.yubico.com/products/yubikey-hardware/
http://people.redhat.com/zaitcev/linux/OLS05_zaitcev.pdf

	Introduction
	Background
	When USB Goes Bad

	Design
	Threat Model & Assumptions
	Mediating USB Interfaces & Drivers
	Identifying USB devices
	Profiling Malicious USB Devices

	GoodUSB Implementation
	User Space Daemon
	USB Honeypot
	Device Class Identifier
	Limited HID Driver

	Evaluation
	Attack Analysis
	HID-Based Attacks
	Other USB Interfaces and Composite Devices
	Smartphone-Based USB Attacks

	Performance Analysis

	Discussion
	Future Work

	Related Work
	Conclusion
	Acknowledgements
	References

