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=xisting 10T frameworks have permission based access

nings

o’

)

control

Smart home API

[Smart Homes]

Google Fit API
[Wearables]

Android Sensor API
[Quantified Self]

e.g., capability.lockCodes in SmartThings (pincode
FITNESS BODY_READ scope in Google Fit (heartr

e Permissions control what data an
app can access

e Permissions do not control how
apps use data, once they have
access



FlowFence
Flow-control is a first-class primitive

mponent-level information tracking * Restructure apps to obey flow
w enforcement through label policies  Developer declares flows

based flow control I Language-based flow control

FlowFence
— * Support of diverse publishers and consumers of
— data, with publisher and consumer flow policies

* Allows use of existing languages, tools, and OSes




Quarantined Modules and Opaque Handles

Bitmap Bitmap, Taint_Bitmap

Compute Features

-
Ccompute Features Quarantined Module

sandbox
Features of Bitmap OPAQUE_HANDLE(Features of Bitmap)
e computation runs with * Submit a computation that runs in a sant
e rights to access sensitive
‘map data

* All sensitive data is available only in sanc




Quarantined Modules and Opaque Handles

Bitmap

Compute Features
Quarantined Module

Trusted

sandbox

OPAQUE_HANDLE(Features of Bitmap)

Yuarantined Modules can also access FlowFence-provided Trusted API:
rusted APIs check the taint labels of the caller against a flow policy



Face Recognition App Example

door state

Main Program

features

> M _report_recog

features

bitmap
)

bitmap

P
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Door.Open ()

M_features: Take bitmap as inp
and compute feature vectors

M_report_recog: Take feature
vectors, lookup DB of authorize
faces, unlock door if face prese
Report door state



FlowFence — Refactored App

Main Program N Dc, Tc
‘ (notaQM) L QM features [y e

H1(F(Dc))
Ds, Ts Tc
H1(F(Dc)) —
A 4
*
Ts | TeUTs
Trusted API (Sinks) Tc - Door.Open
@ Ts - Door.Open

Ts = Internet

Door.Open ()



Taint Labels and Flow Policies

Hi | {T1,72,.} | F(D1) Example Policy

{
Taint_Camera - U,

Taint_HeartR = Interne

om.camera.publisher Taint_Camera }

App ID — unique application identifier on the underlying OS
Llabel Name — well-known string that identifies the type of da



Publisher and Consumer Flow Policies

iblisher Policy Consumer Policy
{ Publisher;
Taint_Camera - Ul
}
1252 { Consumer;
Taint_Camera — Door.l
D1 ->S1 Taint_DoorState - Do

Taint_DoorState — Inte

——



Publisher and Consumer Flow Policies

sblisher Policy Consumer Policy

1252 p1>s51 D1->S3

Automatically Approved

{ Publisher;
Taint_Camera - Ul

)

{ Consumer;
Taint_Camera — Door.l
Taint_DoorState - Do«
Taint_DoorState — Inte

)



Data Sharing Mechanisms in Current [oT

Frameworks
n * Polling Interface
e Smart home API * App checks for new data
o’ [Smart Homes] * Callback Interface
* App is called when new data available
V Google Fit API * Device Independence
[Wearables] * E.g., many types of heart rate sensors

produce “heart beat” data

e Consumers should only need to specify
Android Sensor AP] “what” data they want, without specifying

[Quantified Self] how



Key-Value Store —
Polling Interface/Device Independence

ach app gets a single Key-Value Store

n app can only write to its own Key-Value Store

pps can read from any Key-Value Store

eys are public information because consumers need to know about the

write(... d(...
QM_1 - CAM_BITMAP “«rea( M o\ >
/
s T1
T1 s T1
”/

Declared outside a QM



Event Channels —
Callback Interface/Device Independence
Apps can declare statically in code, their intended channels

Only the owner of a channel can fire an event
Channel name is public information

subscribe(QM_2,Channel_C

fireEvent(...)
>

T1

Declared outside a QM T1




FlowFence Implementation

loT Architectures

* Cloud

e Hub

* isolatedProcess = true for sandbox

 Supports native code
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Evaluation Overview

What is the overhead on a micro-level in terms of computation and

?
mMemory: Comparable to loT device ops over
Per-Sandbox Memory Overhead 2.7 MB area-network, e.g., Nest, SmartThi
QM Call Latency 21 i Nest cam peak bandwidth is 1.2 M
Data Transfer b/w into Sandbox  31.5 MB/s

Can FlowFence support real loT apps securely?

Ported 3 Existing loT Apps: SmartLights, Required adding less than 140 lines per
FaceDoor, HeartRateMonitor app; FlowFence isolates flows

What is the impact of FlowFence on macro-performance?

FaceDoor Recognition Latency 5% average increase
HeartRateMonitor Throughput 0.2 fps reduction on average

SmartLights end-to-end latency +110 ms on average



Porting loT Apps to FlowFence

Data Security Risk Original LoC FlowFence LoC Flow Request

Can leak location

SmartLights information 118 193 Loc > Switch
Can leak images Cam - Lock,
FaceDoor of people 322 456 Doorstate - Lock

Doorstate > Net

Can leak images
HeartRateMon and heart rate 257 346 Cam - Ul

artLights, FaceDoor — 2 days of porting effort each, HeartMon — 1 day of porting e



Macro-performance of Ported Apps

aceDoor Enroll Latency
3seline 811 ms (SD =37.1)

wFence 937 ms (SD =60.4)

2Door Recognition Latency
(612x816 pixels)

Baseline C—1 FlowFence IIEm

0 1 2 3 4 5

Recog. DB Size (num. of images)

SmartLights End-To-End Latency

Baseline 160 ms (SD =69.9)
FlowFence 270 ms (SD =96.1)

HeartRateMon Throughput

Throughput w/o 23.0 (SD=0.7) fps 22.9 (SD=0.
Image Processing

Throughput w/ 22.9 (SD=0.7) fps 22.7 (SD=0.
Image Processing



Summary

nerging loT App Frameworks only support permission-based access contrc
alicious apps can steal sensitive data easily

owFence explicitly embeds control and data flows within app structure;
svelopers must split their apps into:

» Set of communicating Quarantined Modules with the unit of communication being
Opaque Handles — taint tracked, opaque refs to data

* Non-sensitive code that orchestrates QM execution

owFence supports publisher and consumer flow policies that enable buildin
cure loT apps

e ported 3 existing loT apps in 5 days; Each app required adding < 140 LoC

acro-performance tests on ported apps indicate FlowFence overhead is
asonable: e.g., 4.9% latency overhead to recog. a face & unlock a door



Discussion

Nhat’s the limitation of FlowFence?

{ow is the usability of FlowFence to developers and users?
1ow to improve FlowFence?

Nhat makes protecting loT challenging?

s FlowFence able to mitigate the attacks we discussed in last
lass?



Instruction-Level Flow Analysis Techniques

Dynamic Taint Tracking
e granularity
 developer effort

Static Taint Tracking
e granularity
 developer effort

loT devices (and hubs) have
constrained hardware

OS and Language Diversity;
[Supports Rapid Developme

Fundamental Trigger-Action
Nature of loT apps = Lots of
async. code



