FlowFence:
Emerging

Practica

ol App

Data Protection for
ication Frameworks

Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato,
Mauro Conti, Atul Prakash

University of Michigan, University of Padova

Published at USENIX Security 2016

sed on authors’ slides

Presenter: Qi W\

es/Quantified Self

SmartThings

CiND=

WE:

amazonalexa
N——1

Emerging loT App
Frameworks

Smart Homes

. Sink
=, » APP
i “ Consumer
A Publisher of App
ce Sensitive Data

nlock door if face is recognized + App needs to compute ¢
ome-owner can check activity sensitive data to provide

om Internet useful service

* But has the potential to
leak data

Sink

=xisting 10T frameworks have permission based access

nings

o’

)

control

Smart home API

[Smart Homes]

Google Fit API
[Wearables]

Android Sensor API
[Quantified Self]

e.g., capability.lockCodes in SmartThings (pincode
FITNESS BODY_READ scope in Google Fit (heartr

e Permissions control what data an
app can access

e Permissions do not control how
apps use data, once they have
access

FlowFence
Flow-control is a first-class primitive

mponent-level information tracking * Restructure apps to obey flow
w enforcement through label policies Developer declares flows

based flow control I Language-based flow control

FlowFence
— * Support of diverse publishers and consumers of
— data, with publisher and consumer flow policies

* Allows use of existing languages, tools, and OSes

Quarantined Modules and Opaque Handles

Bitmap Bitmap, Taint_Bitmap

Compute Features

-
Ccompute Features Quarantined Module

sandbox
Features of Bitmap OPAQUE_HANDLE(Features of Bitmap)
e computation runs with * Submit a computation that runs in a sant
e rights to access sensitive
‘map data

* All sensitive data is available only in sanc

Quarantined Modules and Opaque Handles

Bitmap

Compute Features
Quarantined Module

Trusted

sandbox

OPAQUE_HANDLE(Features of Bitmap)

Yuarantined Modules can also access FlowFence-provided Trusted API:
rusted APIs check the taint labels of the caller against a flow policy

Face Recognition App Example

door state

Main Program

features

> M _report_recog

features

bitmap
)

bitmap

P
@
L‘
N

Door.Open ()

M_features: Take bitmap as inp
and compute feature vectors

M_report_recog: Take feature
vectors, lookup DB of authorize
faces, unlock door if face prese
Report door state

FlowFence — Refactored App

Main Program N Dc, Tc
‘ (notaQM) L QM features [y e

H1(F(Dc))
Ds, Ts Tc
H1(F(Dc)) —
A 4
*
Ts | TeUTs
Trusted API (Sinks) Tc - Door.Open
@ Ts - Door.Open

Ts = Internet

Door.Open ()

Taint Labels and Flow Policies

Hi | {T1,72,.} | F(D1) Example Policy

{
Taint_Camera - U,

Taint_HeartR = Interne

om.camera.publisher Taint_Camera }

App ID — unique application identifier on the underlying OS
Llabel Name — well-known string that identifies the type of da

Publisher and Consumer Flow Policies

iblisher Policy Consumer Policy
{ Publisher;
Taint_Camera - Ul
}
1252 { Consumer;
Taint_Camera — Door.l
D1 ->S1 Taint_DoorState - Do

Taint_DoorState — Inte

——

Publisher and Consumer Flow Policies

sblisher Policy Consumer Policy

1252 p1>s51 D1->S3

Automatically Approved

{ Publisher;
Taint_Camera - Ul

)

{ Consumer;
Taint_Camera — Door.l
Taint_DoorState - Do«
Taint_DoorState — Inte

)

Data Sharing Mechanisms in Current [oT

Frameworks
n * Polling Interface
e Smart home API * App checks for new data
o’ [Smart Homes] * Callback Interface
* App is called when new data available
V Google Fit API * Device Independence
[Wearables] * E.g., many types of heart rate sensors

produce “heart beat” data

e Consumers should only need to specify
Android Sensor AP] “what” data they want, without specifying

[Quantified Self] how

Key-Value Store —
Polling Interface/Device Independence

ach app gets a single Key-Value Store

n app can only write to its own Key-Value Store

pps can read from any Key-Value Store

eys are public information because consumers need to know about the

write(... d(...
QM_1 - CAM_BITMAP “«rea(M o\ >
/
s T1
T1 s T1
”/

Declared outside a QM

Event Channels —
Callback Interface/Device Independence
Apps can declare statically in code, their intended channels

Only the owner of a channel can fire an event
Channel name is public information

subscribe(QM_2,Channel_C

fireEvent(...)
>

T1

Declared outside a QM T1

FlowFence Implementation

loT Architectures

* Cloud

e Hub

* isolatedProcess = true for sandbox

 Supports native code

(¢ === . Y4 |
Consumer | i Trusted Service — __________ Sandl
(E—rT :|</> i I e -

</> VRS B !
DV FEe - gl 1]<ps

Other codes 1 :’, - p ~ \\\ = :

O Resources! </> : Opague Handle Table \\\ E !__9'_11_

\ V\ LQM g) Handle Data Taint \\\ \

TN \\
Opaque Handle . RA S

N ~Sandt

e N it

Key-Value Store () [—

Key Value Taint E 1 | <I :

IS i '

\ / e L2

4 D |~

(|) TS —
Publisher > (

el Trusted API Q] 55 Sandl
—) o | -+ M 1
</> 1> € (™
|] \. J © ! </.
Other codes :PUinShe¢ ~ ‘|‘ P | o Ll_J : '
2L TNeell o -~ 1 Publish
~ e ettt J_

Evaluation Overview

What is the overhead on a micro-level in terms of computation and

?
mMemory: Comparable to loT device ops over
Per-Sandbox Memory Overhead 2.7 MB area-network, e.g., Nest, SmartThi
QM Call Latency 21 i Nest cam peak bandwidth is 1.2 M
Data Transfer b/w into Sandbox 31.5 MB/s

Can FlowFence support real loT apps securely?

Ported 3 Existing loT Apps: SmartLights, Required adding less than 140 lines per
FaceDoor, HeartRateMonitor app; FlowFence isolates flows

What is the impact of FlowFence on macro-performance?

FaceDoor Recognition Latency 5% average increase
HeartRateMonitor Throughput 0.2 fps reduction on average

SmartLights end-to-end latency +110 ms on average

Porting loT Apps to FlowFence

Data Security Risk Original LoC FlowFence LoC Flow Request

Can leak location

SmartLights information 118 193 Loc > Switch
Can leak images Cam - Lock,
FaceDoor of people 322 456 Doorstate - Lock

Doorstate > Net

Can leak images
HeartRateMon and heart rate 257 346 Cam - Ul

artLights, FaceDoor — 2 days of porting effort each, HeartMon — 1 day of porting e

Macro-performance of Ported Apps

aceDoor Enroll Latency
3seline 811 ms (SD =37.1)

wFence 937 ms (SD =60.4)

2Door Recognition Latency
(612x816 pixels)

Baseline C—1 FlowFence IIEm

0 1 2 3 4 5

Recog. DB Size (num. of images)

SmartLights End-To-End Latency

Baseline 160 ms (SD =69.9)
FlowFence 270 ms (SD =96.1)

HeartRateMon Throughput

Throughput w/o 23.0 (SD=0.7) fps 22.9 (SD=0.
Image Processing

Throughput w/ 22.9 (SD=0.7) fps 22.7 (SD=0.
Image Processing

Summary

nerging loT App Frameworks only support permission-based access contrc
alicious apps can steal sensitive data easily

owFence explicitly embeds control and data flows within app structure;
svelopers must split their apps into:

» Set of communicating Quarantined Modules with the unit of communication being
Opaque Handles — taint tracked, opaque refs to data

* Non-sensitive code that orchestrates QM execution

owFence supports publisher and consumer flow policies that enable buildin
cure loT apps

e ported 3 existing loT apps in 5 days; Each app required adding < 140 LoC

acro-performance tests on ported apps indicate FlowFence overhead is
asonable: e.g., 4.9% latency overhead to recog. a face & unlock a door

Discussion

Nhat’s the limitation of FlowFence?

{ow is the usability of FlowFence to developers and users?
1ow to improve FlowFence?

Nhat makes protecting loT challenging?

s FlowFence able to mitigate the attacks we discussed in last
lass?

Instruction-Level Flow Analysis Techniques

Dynamic Taint Tracking
e granularity
 developer effort

Static Taint Tracking
e granularity
 developer effort

loT devices (and hubs) have
constrained hardware

OS and Language Diversity;
[Supports Rapid Developme

Fundamental Trigger-Action
Nature of loT apps = Lots of
async. code

