
FlowFence: Prac-cal Data Protec-on for
Emerging IoT Applica-on Frameworks

Earlence	Fernandes,	Jus/n	Paupore,	Amir	Rahma/,	Daniel	Simionato,		
Mauro	Con/,	Atul	Prakash	

Published at USENIX Security 2016

Presenter: Qi Wang

University of Michigan, University of Padova

Based on authors’ slides

Emerging	IoT	App		
Frameworks	

Wearables/Quan/fied	Self	

Connected	Healthcare	

Smart	Homes	 2	

Consumer		
App	

•  Unlock	door	if	face	is	recognized 	
•  Home-owner	can	check	ac/vity		

from	Internet	

•  App	needs	to	compute	on		
sensi/ve	data	to	provide		
useful	service	

•  But	has	the	poten/al	to	
leak		data	

Publisher	of		
Sensi/ve	Data	

Sink	

Source	

Sink	

3	

Exis-ng IoT frameworks have permission based access
control

•  Permissions	control	what	data	an		
app	can	access	

4	

•  Permissions	do	not	control	how		
apps	use	data,	once	they	have		
access	

Smart	home	API	
[Smart	Homes]	

Google	Fit	API	
[Wearables]	

Android	Sensor	API	
[Quan/fied	Self]	

e.g.,	capability.lockCodes in	SmartThings	(pincodes),
FITNESS_BODY_READ scope	in	Google	Fit	(heart	rate)	
	

FlowFence
Flow-control is a first-class primi-ve

FlowFence	
•  Support	of	diverse	publishers	and	consumers	of		

data,	with	publisher	and	consumer	flow	policies	
•  Allows	use	of	exis/ng	languages,	tools,	and	OSes	

Language-based	flow	control	
Restructure	apps	to	obey	flow	rules	•

•  Developer	declares	flows	

Label-based	flow	control	
•  Component-level	informa/on	tracking	
•

5	

Flow	enforcement	through	label	policies	 +	

=	

Compute	Features	

Bitmap	

Features	of	Bitmap	

Compute	Features	
Quaran/ned	Module	

Bitmap,	Taint_Bitmap	

OPAQUE_HANDLE(Features	of	Bitmap)	

•  Submit	a	computa/on	that	runs	in	a	sandbox	

6	

•  All	sensi/ve	data	is	available	only	in	sandboxes	

•  The	computa/on	runs	with		
the	rights	to	access	sensi/ve		
bitmap	data	

sandbox	

Quaran-ned Modules and Opaque Handles

Compute	Features	
Quaran/ned	Module	

Bitmap	

Trusted	APIs	

• Trusted	APIs	check	the	taint	labels	of	the	caller	against	a	flow	policy	
7	

sandbox	

OPAQUE_HANDLE(Features	of	Bitmap)	

•  Quaran/ned	Modules	can	also	access	FlowFence-provided	Trusted	APIs	

Quaran-ned Modules and Opaque Handles

Face Recogni-on App Example

10	

Door.Open()

Main	Program	 M_features	

M_report_recog	

bitmap	

features	
features	

door	state	

•  M_features:	Take	bitmap	as	input		
and	compute	feature	vectors	

•  M_report_recog:	Take	feature		
vectors,	lookup	DB	of	authorized		
faces,	unlock	door	if	face	present;	

					Report	door	state	
	

bitmap	

X	

FlowFence – Refactored App

11	Door.Open()

Main	Program		
(not	a	QM)	 QM_features	

QM_report	 QM_recog	

Tc	

Trusted	API	(Sinks)	

Dc,	Tc	

H1(F(Dc))	
Ds,	Ts	 Ds,	Ts	

H1(F(Dc))

Tc	→	Door.Open		
Ts	→	Door.Open	

Ts	→	Internet	

H1(F(Dc))	

Ts
	

Tc	U	Ts	

Taint Labels and Flow Policies

App_ID	 Label_Name	
com.camera.publisher	 Taint_Camera	

H1	 {T1,	T2,	…}	 F(D1)	

10	

Example	Policy	

{
Taint_Camera → UI,
Taint_HeartR → Internet

}

•  App_ID	–	unique	applica/on	iden/fier	on	the	underlying	OS	
•  Label_Name	–	well-known	string	that	iden/fies	the	type	of	data	

Publisher and Consumer Flow Policies

Publisher	Policy	 Consumer	Policy	

D1	→	S1	

D1	→	S2	

D1	→	S1	

D1	→	S3	

11	

{ Publisher;
Taint_Camera → UI

}

{ Consumer;
Taint_Camera → Door.Open
Taint_DoorState → Door.Open
Taint_DoorState → Internet

}

Publisher and Consumer Flow Policies

Publisher	Policy	 Consumer	Policy	

D1	→	S2	 D1	→	S3	D1	→	S1	

Automa/cally	Approved	

Prompt	

12	

{ Publisher;
Taint_Camera → UI

}

{ Consumer;
Taint_Camera → Door.Open
Taint_DoorState → Door.Open
Taint_DoorState → Internet

}

Data Sharing Mechanisms in Current IoT
Frameworks

• Polling	Interface	
•  App	checks	for	new	data	

• Callback	Interface	
•  App	is	called	when	new	data	available	

• Device	Independence	
•  E.g.,	many	types	of	heart	rate	sensors		
produce	“heart	beat”	data	

•  Consumers	should	only	need	to	specify		
“what”	data	they	want,	without	specifying		
“how”	

Smart	home	API	
[Smart	Homes]	

13	

Google	Fit	API	
[Wearables]	

Android	Sensor	API	
[Quan/fied	Self]	

Key-Value Store –
Polling Interface/Device Independence

QM_1	

T1	

CAM_BITMAP	 QM_2	

T1	
T1	

write(…)	

14	

read(…)	

Declared	outside	a	QM	

Data	

•  Each	app	gets	a	single	Key-Value	Store	
•  An	app	can	only	write	to	its	own	Key-Value	Store	
•  Apps	can	read	from	any	Key-Value	Store	
•  Keys	are	public	informa/on	because	consumers	need	to	know	about	them	

Event Channels –
Callback Interface/Device Independence

QM_1	

T1	

Channel_Cam	

Channel_2	

QM_2	

T1	
QM_3	

T1	

fireEvent(…)	

Declared	outside	a	QM	

Data	

Data	

•  Apps	can	declare	sta/cally	in	code,	their	intended	channels	
•  Only	the	owner	of	a	channel	can	fire	an	event	
•  Channel	name	is	public	informa/on	

15	

subscribe(QM_2,Channel_Cam)	

FlowFence Implementa-on

•  IoT	Architectures	
•  Cloud	
•  Hub	

17	

“Hub”	

•  isolatedProcess	=	true	for	sandboxes	
•  Supports	na/ve	code	

Evalua-on Overview

• What	is	the	overhead	on	a	micro-level	in	terms	of	computa/on	and	
memory?	

• Can	FlowFence	support	real	IoT	apps	securely?	
Ported	3	Exis/ng	IoT	Apps:	SmartLights, 	Required	adding	less	than	140	lines	per		
FaceDoor,	HeartRateMonitor 	app;	FlowFence	isolates	flows	

• What	is	the	impact	of	FlowFence	on	macro-performance?	
FaceDoor	Recogni/on	Latency	 5%	average	increase	

HeartRateMonitor	Throughput	 0.2	fps	reduc/on	on	average	

SmartLights	end-to-end	latency	 +110	ms	on	average	

Per-Sandbox	Memory	Overhead	 2.7	MB	

QM	Call	Latency	 92	ms	

Data	Transfer	b/w	into	Sandbox	 31.5	MB/s	

Comparable	to	IoT	device	ops	over	wide-		
area-network,	e.g.,	Nest,	SmartThings	

Nest	cam	peak	bandwidth	is	1.2	Mb/s	

17	

18	

Por-ng IoT Apps to FlowFence

App	 Data	Security	Risk	 Original	LoC	 FlowFence	LoC	 Flow	Request	

	
SmartLights	

Can	leak	loca/on		
informa/on	

	
118	

	
193	

	
Loc	→	Switch	

	
FaceDoor	

Can	leak	images		
of	people	

	
322	

	
456	

Cam	→	Lock,		
Doorstate	→	Lock,		
Doorstate	→	Net	

	
HeartRateMon	

Can	leak	images		
and	heart	rate	

	
257	

	
346	

	
Cam	→	UI	

SmartLights,	FaceDoor	–	2	days	of	por/ng	effort	each,	HeartMon	–	1	day	of	por/ng	effort	

Baseline	 160	ms	(SD	=	69.9)	

FlowFence	 270	ms	(SD	=	96.1)	

FaceDoor	Recogni/on	Latency	
(612x816	pixels)	

HeartRateMon	Throughput	

Throughput	w/o		
Image	Processing	

23.0	(SD=0.7)	fps	 22.9	(SD=0.7)	fps	

Throughput	w/		
Image	Processing	

22.9	(SD=0.7)	fps	 22.7	(SD=0.7)	fps	

Baseline	 811	ms	(SD	=	37.1)	

FlowFence	 937	ms	(SD	=	60.4)	

20	

Macro-performance of Ported Apps
FaceDoor	Enroll	Latency 	SmartLights	End-To-End	Latency	

20	

Summary

•  Emerging	IoT	App	Frameworks	only	support	permission-based	access	control:		
Malicious	apps	can	steal	sensi/ve	data	easily	

•  FlowFence	explicitly	embeds	control	and	data	flows	within	app	structure;		
Developers	must	split	their	apps	into:	

•  Set	of 	communica/ng	Quaran/ned	Modules	with	the	unit	of	communica/on	being		
Opaque	Handles	–	taint	tracked,	opaque	refs	to	data	

•  Non-sensi/ve	code	that	orchestrates	QM	execu/on	
•  FlowFence	supports	publisher	and	consumer	flow	policies	that	enable	building		
secure	IoT	apps	

• We	ported	3	exis/ng	IoT	apps	in	5	days;	Each	app	required	adding	<	140	LoC	
• Macro-performance	tests	on	ported	apps	indicate	FlowFence	overhead	is		
reasonable:	e.g.,	4.9%	latency	overhead	to	recog.	a	face	&	unlock	a	door	

Discussion

•  What’s	the	limita/on	of	FlowFence?	
•  How	is	the	usability	of	FlowFence	to	developers	and	users?	
•  How	to	improve	FlowFence?	
•  What	makes	protec/ng	IoT	challenging?	
•  Is	FlowFence	able	to	mi/gate	the	azacks	we	discussed	in	last	

class?	

Instruc-on-Level Flow Analysis Techniques

Dynamic	Taint	Tracking	
+	Fine	granularity	
+	No	developer	effort	
- High	computa/onal	overhead	
- May	need	special	h/w	for	accelera/on	
-  Implicit	flows	can	leak	informa/on	
- Limited	OS/Language	flexibility	

StaPc	Taint	Tracking	

+	Fine	granularity	
+	No	developer	effort	
-  Implicit	flows	can	leak	informa/on	
-  IPC	and	async.	code	can	leak	informa/on	

IoT	devices	(and	hubs)	have		
constrained	hardware	

OS	and	Language	Diversity;		
[Supports	Rapid	Development]	

Fundamental	Trigger-Ac/on		
Nature	of	IoT	apps	=	Lots	of		
async.	code	

2
2	

