Insecurity of Voice Solution VoLTE in LTE Mobile Networks

Chi-Yu Li, Guan-Hua Tu, Chunyi Peng, Zengwan Yuan, Yuanjie Li, Songwu Lu, Xinbing Wang (CCS'15)

Voice Evolution in 4G LTE

- 2G/3G Solution: Circuit Switched

- 4G LTE Solution: Pack Switched
 - Similar to VoIP over the Internet w/ high priority, quality of service offered by LTE

Voice over LTE (VoLTE): Voice in Packets

- PS delivery: offers PS connectivity, forwards packets, and control utility
- IMS Core: telephony & multimedia service
 - Media: deliver multimedia (voice) to VoLTE users
 - Signal: call control function

How does VoLTE work?

- Control Plane
 - Exchange call signaling messages through session initiation protocol
 - On as long as VoLTE is on
 - Non-guaranteed bit-rate w/ highest priority
- Data Plane
 - Voice packet delivery
 - On demand by control session
 - Guaranteed bit rate class
- All voice traffic and signaling messages are carried in packets
 - 4G gateway route regular data packages but also control and data plane packages
 - Higher priority than data services

Carrying Data in Signaling Bearer

Lack of Access Control at Phone Software & Hardware

Figure 3: VoLTE Access control on the device side.

- Two Access Control for VoLTE
 - Hardware
 - Software
 - Apps can obtain VoLTE interface information
 - IP and routing information
 - Injecting data packets to signal bearer

Lack of Access Control at Phone Software & Hardware

- Validation
 - App can obtain VoLTE interface
 - learning signal bearer & PS data
 - Check rmnet0 or rmnet1 when disabling VoLTE
 - Then check routing table
 - Inject Non-VoLTE packets into signaling bearer
 - Send packet to signaling server
 - Receives ICMP packet from VoLTE gateway
- Lesson
 - Can't distinguish Internet data & VoLTE interface
 - Hardware trusts all VoLTE interface traffic

Imprudent Routing and Forwarding in the Network

- Traffic carried through VoLTE is not verified at runtime
 - Non-authentic control packets can be forwarded by network
- Routing Rules in Mobile Networks are abused
 - When routing rule toward each phone exist at gateway, phone can communicate without reaching signaling bearer
 - Mobile to Mobile & Mobile to Internet Communication
- Validation
 - Mobile to Internet: observe messages exchange between phone and external server
 - Mobile to Mobile: send ICMP Echo Request to Mobile
- Lessons
 - Operator does not regulate routing and packet forwarding for the VoLTE bearer

Exploiting VoLTE for Free Data Access

Abusing No Billing of VoLTE Signal

- Billing doesn't take signaling into account, regardless of destination
 - Only call duration on data plane is collected for billing
 - Control messages is meant for facilitating calle
- Hence, injecting data into signal bearer -> free data
- No way of limiting traffic going through signaling bearer
- Validation
 - Make calls every 15 seconds for 10 hours, 42.4 MB control messages, none charged
 - Fake 5000 ICMP Echo Request and receive 4914 echo replies
- Lessons
 - Exploit free signaling
 - Better access control or no free-of-charge policy

Manipulating Data Access Priority

Abusing High QoS og VoLTE Signaling

- VoLTE suppresses normal PS data
- Validation
 - During downlink session, launch VoLTE exploit data access that's greater than affordable throughput
 - Swap launch ordering for exploited VoLTE and data session

Proof Of Concepts Attacks

- Free Data Attack
 - Adversary leverages ICMP tunneling to deliver data through signal bearer
 - Update routing table (only on rooted phone)

Figure 8: The volume of free data almost linearly increases with regards to (w.r.t) traffic source rate and run time in external (a,b) and internal (c,d) cases.

Proof of Concepts Attacks

- Data DoS Attack
 - Shutdown ongoing services by leveraging priority access
 - Requires malware on victim's phone to detect data services starts and send adversary IP information
 - Adversary sends high-rate spams to victim's IP
- Overcharging Attack
 - Similar as the above attack, the adversary sends spams to victim's IP via data service bearer

Attacks on Real Apps

- Free Skype Service over Mobile Networks
 - ICMP tunnel between phone and external server
 - Modify routing table to tunneling server
 - Run skype app over phone and consume data
- Data DoS on Web Browser and Youtube
 - Data DoS while loading CNN webpage with browser watching Youtube
 - Send 10Mbps of VoLTE spam to phone

Muting Voice Through Spams in VoLTE Data Plane

Injecting Voice Into the Voice Bearer

- Voice Bearer
 - Handled by hardware without software intervention
 - Each session identifier is a secret
- However
 - Deliver invalid data packet since
 - Inject data to voice bearer
 - Confidential information can be inferred through salient features

Insufficient Data-Plane Access Defense at Phone

- Voice codec is encoded within hardware
- But, it doesn't restrict access to authentic VoLTE calls only
 - Accepts other apps injection as long as correction session information
 - Voice bearer can be overflowed
- Validation
 - During an ongoing call, app generates packets with voice session identifier and sends to via VoLTE interface
 - Callee's voice is muted
- Lessons
 - Doesn't authenticate origin of app traffic

Side-Channel Leakage of Session Privacy

- Session ID should be secret as carried by the signaling messages of VoLTE application
- Destination IP address can be retrieved from routing table
- VoLTE signal and voice bearer uses the same IP, so one can learn port by sending packets to all the ports because RTP and RTCP has smallest delay
- Validation
 - App scans all port and and delay between ports

Side-Channeling Leakage by Improper Coordination

- Get Voice session ID
- Voice Bearer during call setup and termination via control signals
- If voice bearer isn't established, voice packets are sent to control plane
 - Observe voice packet via non-VoLTE apps
- Validation
 - IP packets collected from VoLTE signaling interface and verifies port

Voice Muted DoS Attack

- Call muted on both sides, requires a malware on victim's phone
- Learn ports of RTP session via side-channeling
- Malware hijack RTP packets with corresponding session ID
- Mute both uplink and downlink

Summary

Category	Attack	Victim	Description and Threat	Vulnerability
Data (§3)	Free data	Operator	Adversary device gains free data access to	V1: Lack of the control-plane access control (§3.1)
			the Internet or another mobile device.	V2: Imprudent forwarding in the network (§3.1)
	Overbilling	Individual	Adversary injects spams to impose	V3: Abusing no billing of VoLTE signaling traffic (§3.2)
			excessive data bill on the victim.	
	Preemptive	Operator,	Adversary device gains undeserved	V1: Lack of the control plane access control (\$3.1)
	data	Individual	higher-priority data access.	v 1. Lack of the control-plane access control (35.1)
	Data DoS	Individual	Adversary shuts down the ongoing data	V4: Abusing highest-priority allocated to VoLTE control
			access on the victim phone.	plane (§3.3)
Voice (§4)	Muted voice	Individual	Adversary mutes an ongoing VoLTE call	V5: Insufficient data-plane access control (§4.1)
	(DoS)		on the victim.	V6: Side-channel leakage of data-plane information (§4.1)
	Enhanced	Individual	Adversary mutes the voice faster.	V5: Insufficient data-plane access control (§4.1)
	muted voice			V7: Leakage from improper both-plane coordination (§4.2)

Recommended Fixes

- 4G Gateway enforces strict routing regulation for bearer
- Operator stops free-signaling policy and charges signals to data traffic
- Ensure resource allocation to authentic traffic only
- Device
 - Only allow dialer app to access VoLTE interface
 - Chipset verifies traffic source and destination

Discussion

- What are the main contributions to this work?
- What are the limitations of the paper?
- Are the attacks feasible on a large scale?
- Are the mitigations suggested sufficient?