
A Trusted Safety Verifier for
Processor Controller Code
Stephen McLaughlin, Saman Zonouz, Devin Pohly,

Patrick McDaniel

Penn State University, University of Miami
NDSS 2014

Industrial Control Systems 101
● Control systems are everywhere

○ Power grid, automation, manufacturing,
transportation, etc.

○ Big implications if hacked

● Control systems are attractive for
attackers

○ Stuxnet
○ Port scanning PLCs
○ Remote network attacks on PLCs

Trusted Computing Base
● “Set of all subsystems that are required for security of a system”

○ Hardware
○ Firmware
○ Network
○ Software
○ You name it!

● Problem: ICS TCB is TOO BIG!
● Solution: Build a system to reduce the size

Programmable Logic Controller (PLC)
● “Digital, multi-input multi-output computer used for automation of physical

machinery”
● Reads sensor measurements, takes action on those measurements
● Has a fixed program that runs continuously as long as the PLC is on

○ Each execution called a scan cycle
○ Input memory, program execution, output memory

● TSV Goal: Efficiently check code coming over the interface for safety
properties

Threat Model

Limitations
● Underlying assumption is that the firmware on PLC is trusted

○ Firmware attacks can bypass PLC

● Bad sensor data is out of scope
● Inside attacker is out of scope

IL(IL)
● PLC programs are written in “Instruction List”, which is a form of ladder logic

○ Looks like a graphical diagram based on logic hardware
○ Set of instructions to operate physical machinery

● IL programs are vendor specific, so they are very hard to analyze directly
● Authors built ILIL, which is a set of “top-level instructions followed by function

definitions”
○ Elevated IL to a program with no side effects, so safety properties can be measured

Symbolic Execution
● Analyze a program to see what inputs produce what outputs

○ Naively think of trying all possible inputs and outputs to every branch in a program

● TSV creates symbolic scan cycle
○ Set of logic formulas that should map all inputs and outputs
○ SMT solver used to prune infeasible branches
○ Hard deadline termination reduces the symbol equation space
○ Lump all inputs that produce similar outputs to reduce solving space

● Why is this useful?

Checking Temporal Properties
● PLCs are always running, so multiple runs of the same program touch

pre-modified memory values
○ Symbolic execution is not enough, we need temporal model checking
○ Use Linear Temporal Logic (LTL) to define safety rules

Temporal Execution Graph
● High level: State machine that models the symbols from step 1 and the safety

properties from step 2
● Inputs: symbolic scan cycle, LTL predicates, termination deadline
● Steps

○ Initialize the TEG with 0 values for all PLC variables/predicates/symbols
○ Load scan cycle and predicates
○ For each predicate, evaluate if it is satisfiable from previous state
○ If so, create a new state, and determine whether or not it already exists in the graph

■ If it exists, don’t add it
■ If it doesn’t, create a state transition

● Malicious code discovery: Show to the operator an example of why the
system failed the check

Performance

Discussion

