		Attacks Against Process Control Systems: Risk Assessment, Detection, and Response			
	A.Cardenas, S. Amin, Z. Lin, Y. Huang, C. Huang and S. Sastry ASIACCS 2011				
		Presented by Siddharth Murali			
π					

Control Systems

- Computer based systems that monitor and control physical processes
- > Other names

- Process Control Systems (PCS)
- Supervisory Control and Data Acquisition (SCADA)
- Distributed Control Systems (DCS)
- Cyber-Physical Systems (CPS)

π Attacks against Control Systems

- > Computer-based accidents
- > Non-targeted attack
- > Targeted attacks Stuxnet
 - Uses 0-day exploits, rootkits, stolen certs
 - Searches for WinCC/Step 7, and infects PLC
 - Uses a PLC rootkit to hide changes
 - Changed rotational speed of motors to 1410Hz to 2Hz and back to original speed
 - Shut down 984 centrifuges in Natanz

Current efforts and challenges

> Current Efforts

- Focus on safety and reliability
- Guidelines have been published
- > Challenges
 - Patching and updates are not suited for control systems
 - Legacy systems
 - Real-time availability

Contributions

- > Risk Assessment
 - Understanding attack strategy of adversary
- > New attack-detection algorithms
 - Detecting attacks based on compromised measurement
- > New attack-resilient architecture
 - Design control systems to survive an attack with no loss of critical functions

Risk Assessment

> Attack model

- Integrity attack
- DoS attack
- > Experiment
 - Goal is to make the reactor operate over 3000kPa
 - Attacker has access to a single sensor at a time

Experiment Results

- Attacking the sensors (integrity attack) results in the controller responding with incorrect signals, but unable to force system into unsafe state
- Reducing the purge value did cause the pressure to increase past 3000kPa, takes 20 hours
- DoS attacks do not affect the plant, for a 20 hour DoS attack, pressure did not exceed 2900kPa

Detection of Attacks

- > Optimal stopping problems
 - Given a time series sequence z(1), z(2), . . . , z(N) and hypotheses
 H0 (normal behavior) and H1 (attack)
 - Goal is to determine the minimum number of samples, N, the anomaly detection scheme should observe before making a decision
- > Types of problems
 - Sequential detection
 - Change detection

Detection of Attacks

> Sequential Detection

 π

- Observation z(i) is generated either by H0 or H1
- Goal is to decide which hypothesis is true in minimum time
- Sequential Probability Ratio Test
- > Change Detection
 - Observation z(i) starts under H0, but at a given time k, it changes to H1
 - Goal is to detect change as soon as possible
 - Cumulative sum(CUSUM)

Stealthy Attacks

 π

- > Goal is to raise pressure in the tank without being detected
- > Surge Attacks
 - Attacker tries to maximize the damage as soon as possible
- > Bias Attacks
 - Attacker adds a small constant to the system at each time step
- > Geometric Attacks
 - The attacker wants to drift the value very slowly at the beginning and maximize the damage at the end

Response to Attacks

- > Anomaly Detection Module
 - Replaces sensor measurements with measurements generated by the linear model if anomaly detection algorithm sounds alarm

Response to Attacks – Experiments

> Experiment ran for 40 hours

 π

Alarms	Avg y_5	Std Dev	Max y_5
0	2700.4	14.73	2757

	Alarms	Avg y_5	Std Dev	Max y_5
y_4	61	2710	30.36	2779
y_5	106	2705	18.72	2794
y_7	53	2706	20.89	2776

Table 1: For Thresholds $\tau_{y_4} = 50, \tau_{y_5} = 10000, \tau_{y_7} = 200$ Table 2: Behavior of the plant after response to a false alarm

Discussion

- > Can these algorithms be applied to other CPS?
- > How do you design a security protocol for control systems, keeping in mind the constraints?
- > Will a system like this work against an attack like the Stuxnet worm?
- > Is it enough to ensure integrity of a control system, or should we aim to prevent attackers from gaining access to the system as well?