CS 598 - Computer Security
N the Physical Worla:

’roject Submission #2

Professor Adam Bates
Fall 2016

esearch at lllinois (SPRAI)

Last Deliverable (BG+R\/\/)

| will have feedback back to you by this evening.

* Generally positive impressions. Did people have
trouble writing these!?

* Poor scores were mostly due to people failing to
follow instructions.

* If you fix the issues that | identified prior to the final
submission, the first deliverable will not have a major
impact on your final course project.

Security & Privacy Research at lllinois (SPRAI)

Oct |8th Deliverable [

- Last submission we “locked in” the background and
related work sections of our paper. This submission will
be a living document as you begin to do the real work.

* Purpose:Tell me specifically what are you doing to DO
In your project

- Format: Add a new section called “Experimental
Proposal” to the LaTeX Two Column ACM document.

» Submission: Email me the PDF (include [¢cs598] in
subject)

Security & Privacy Research at lllinois (SPRAI¥ Note: Extremely reductive taxonomy presented on this slide

Oct | 8th Deliverable

Be sure to include:

- Hypothesis: Based on what you’ve learned so far,
“commit” to a prediction that is the basis of your paper.

What does a hypothesis in a defensive paper look like!?

* Methodology and/or Design:VWhat techniques are you
going to use! How are you going to use them!? Will you
leverage existing tools! Convince me that you will
succeed in executing your methodology.

» Evaluation and/or Analysis: How will you determine the
extent to which you have succeeded in your goal?

Security & Privacy Research at lllinois (SPRAI¥ Note: Extremely reductive taxonomy presented on this slide

Using Provenance Patterns
to Vet Sensitive Behaviors in

Android Apps

--C.Yang, et al. SecureComm ‘16

Presented By : Wajih

UNIVERSITY OF ILLINOIS
AT URBANA-CHAMPAIGN

1]

illinois.edu

Problem

How can you tell whether software you
- Develop
- Buy
-Install
is safe to run?

I

illinois.edu

What is Provenance?

Provenance, a.k.a.lineage of data
o Data’s life cycle

s Origins
m Accesses
m Deletion

o Provides confidence in authenticity

Was the latest data used in the computation?
Was the data deleted after its use?
Was the sensitive data sent on network?

[

illinois.edu

Open Provenance Model (OPM)

Process Vertices: Represent dynamic entities PID 1002
e.g. operating system processes UID 3002

Artifact Vertices: Represent static elements that are consumed or produced

by processes.
e.g. files, sockets etc.

Edges: Represent dependency between pair of vertices; Directed
o WasTriggeredBy: from a process to another process
e WasGeneratedBy: from an artifact to a process
e Used: from a process to an artifact
e WasDerivedFrom: from an artifact to another artifact.

[

illinois.edu

Provenance Graph

e Logall the system events and then make OPM relationships to generate
provenance graphs
e Example: Download file from network and executes it:

Socket0 - PID 1002 - mal.exe
Socket1 > PID 3092

I

illinois.edu

Provenance Graph

e Logall the system events and then make OPM relationships to generate
provenance graphs
e Example: Download file from network and executes it:

wasGeneratedBy
Used
Socket0 . PID 1002 - mal.exe

wasGeneratedBy
Socket1 > PID 3092

I

illinois.edu

Program Behavior Analysis

[

illinois.edu

Traditional Analysis methods

Static Analysis: Investigates the properties that can be investigated
by inspecting the downloaded app and its source code only. Eg:
Signature based inspection used by anti-virus technologies.

Dynamic Analysis: In this method, app is runin a secure environment
such as sand-box and logs every relevant operation of the app.

[

illinois.edu

Static vs Dynamic Analysis

Static -

Consider all possible inputs
Can prove absence of
bugs/vulnerability

Cannot handle code
obfuscation (Java reflections,
source encryption etc)
Cannot find vulnerabilities in
RT

Dynamic -

HUGE overhead, reason about

every input

[

Consider some inputs
Can prove presence of
bugs/vulnerability

Cannot guarantee the full
coverage of the source code
May require virtual Machine
instrumentation

illinois.edu

Example: Taint Checking Solution for Behavior Analysis

Example Sinks:

Resultant

Vulnerability:

command
injection

printfi)

format
string
manip.

Tainted data
accepted from
source

¥
Unvetted
data taints
other data
transitively

Y
Tainted data

— is sed in an —

_~- operator or e Y —
function e :
\\\\\
¥ ¥ *
malloc() strcpyl() Sent to RDEMS
integer/ buffer SQL injection
buffer overflow

overflow

Included in HTML

cross site
scripting

[

illinois.edu

Example: Taint Checking Solution for Behavior Analysis

/,.opera?or or
function

Example Sinks: system() printfi) __adll Sent to RDBMS Included in HTML
Resultant commar Require Instrumentation of OS or App m | cross site
Vulnerability: inject scripting

[

illinois.edu

Paper’s Approach

Collect provenance of the applications behaviors without modifications
and generate provenance graphs

Pattern match generated provenance graphs with sensitive behavior
patterns

[

illinois.edu

Dagger

A lightweight system to dynamically vet sensitive behaviors in Android
apps by making provenance graphs.

o No VMl instrumentation

o Less Overhead

o Just tracks apps interactions with underlying platform

Dagger uses the open source SPADE provenance middleware to collect
three types of low-level execution information:

o Linux System Calls -- via Strace

o Android Binder transactions -- via sysfs

o App process details -- via /prof fs

[

illinois.edu

System Design

App Executor:
o Executes the app in a sandbox
Syscall Collector:
o Collects the system call invocation
ProvEst Daemon:
o Collects information from binder transactions; Builds relationships
between artifacts and process
Graph Reporter:
o Outputs Data provenance graph from the relationships made by
ProvEst daemon
Behavior Identifier:
o Detects sensitive behaviors from the provenance graph

[

illinois.edu

Dagger runs each app, collect provenance records and perform pattern

matching
B S R
Sample ' SysCall 3 ProvEst Data Provenance Prov Behaviors _ Sensitive |
Apps i Collector Daemon B Graph Reporter _}Graphs_} Identlﬂer_*Behaviursj |
Vet e user
. & PR SRp E RE SN R P e R SRR S AR E R T RN SN R S S SR B S R N R |
App | SysCall Proc File :
Binder :
Executor| | | Collector System Kernel i

Android 0S

[

illinois.edu

Collection of Sensitive Behaviours

e Theyran Android apps with selected input that is known a priori to
trigger sensitive behavior

e Dependent on internal working of Android

Table 2. Fined-grained sensitive behaviors associated with malicious behaviors

[Index Malicious Behaviors Sensitive Behaviors Index | Malicious Behaviors| Sensitive Behaviors |
1 Phone Call Phone Call 5 Steal Contact Read Contact and Net
2 Send SMS Send SMS 6 Track Location Read Location and Net
3 Block SMS Receive SMS, not Write SMSDB| 7 Execute Shell Execute Shell
4 Steal SMS Read SMSDB and Net 8 Net Net

[

illinois.edu

Example Sensitive Behaviour

Pattern : Read Geolocation: —
e An app attempts to read the Applications
geographic location

| Phone Application |

| Read Geolocation]

e Interacts with the Location Application [: Talaphony Manager }
Mana ger Service i /java/android/location/LocationManager
. | GpsLocationProvider |
e Requests the location from the
GpsLocationProvider. Y ——
(User spaca) ‘ Libgps.so '
Limx Kernel | KemelDriver |

[

illinois.edu

Provenance Generated from the Behaviour

App package name
Type: Process

Type: Artifact
Location: Binder

PID: 70

system server
Type: Process

Type: WasGeneratedBy
Operation: fork

Hame: GpsLocationProv
Type: Process

R ———.

q

[
Name: LocationManager
Type: Process

[

illinois.edu

Evaluations

Evaluated EFFECTIVENESS from three perspectives:
1. Vetting real-world malware case studies
1.1. Gamex: Code Encryption
1.2. GoneébO0: Privacy Leakage
1.3. Zsone: SMS Service Usage

2. Vetting Android Genome Project malware [S&P 2012]
2.1. 1,260 real-world malware samples collected from the Genome
Project

3. Vetting official market (Google Play) apps
3.1. 1000 apps sampled from 18,527 official market (Google Play)

[

illinois.edu

Evaluations

Evaluated EFFICIENCY from three perspectives:
(i) CPU overhead

(ii) Memory overhead

(iii) Runtime overhead

Used AnTuTu (android benchmark app) to test performance

Both CPU and Memory overhead was less than 10 %
The runtime overhead is less than 63%
o Strace overhead

[

illinois.edu

Discussion

What are the key contributions of this paper?

What are the limitations of this paper?

Can we use Provenance Patterns for something else?

BACKUP SLIDES

Taint Analysis
Explicit - Passed in assignments
Implicit - Passed in control flow structures (ICC, Broadcasts, Media)

Data-Flow Analysis
Most use some form of Data Flow Analysis with Taint Analysis

Sources: Location Data, Unique IDs, Call State, Authentication Data and
Contact/Calendar Data

Sinks: SMS Communications, File Output, Network Communication, Intents,
Content Resolver

Examples: TaintDroid (2010), AndroidLeaks (2012)

[

illinois.edu

Android Architecture

Applications

Browser

Applications Framework

'_Conteht
Providers

Telephone Resource ocation Notification
Manager Manager - Manager - Manager

Libraries

Media

; Core Libraries }
~ Framework [)

SQLite

Dalvik Virtual
Machine

OpenGL |

Linux Kernel

Display Driver Flash Memory Binder (IPC)
Driver Driver

. . . . Power
SRl Management

