
Security & Privacy Research at Illinois (SPRAI)

Professor Adam Bates
Fall 2016

CS 598 - Computer Security
in the Physical World:
Project Submission #2

Security & Privacy Research at Illinois (SPRAI)

Last Deliverable (BG+RW)

2

• I will have feedback back to you by this evening.

• Generally positive impressions. Did people have
trouble writing these?

• Poor scores were mostly due to people failing to
follow instructions.

• If you fix the issues that I identified prior to the final
submission, the first deliverable will not have a major
impact on your final course project.

Security & Privacy Research at Illinois (SPRAI)

Oct 18th Deliverable

3

• Last submission we “locked in” the background and
related work sections of our paper. This submission will
be a living document as you begin to do the real work.

• Purpose: Tell me specifically what are you doing to DO
in your project

• Format: Add a new section called “Experimental
Proposal” to the LaTeX Two Column ACM document.

• Submission: Email me the PDF (include [cs598] in
subject)

* Note: Extremely reductive taxonomy presented on this slide

Security & Privacy Research at Illinois (SPRAI)

Oct 18th Deliverable

4

Be sure to include:

• Hypothesis: Based on what you’ve learned so far,
“commit” to a prediction that is the basis of your paper.

• What does a hypothesis in a defensive paper look like?

• Methodology and/or Design: What techniques are you
going to use? How are you going to use them? Will you
leverage existing tools? Convince me that you will
succeed in executing your methodology.

• Evaluation and/or Analysis: How will you determine the
extent to which you have succeeded in your goal?

* Note: Extremely reductive taxonomy presented on this slide

Using Provenance Patterns
to Vet Sensitive Behaviors in
Android Apps
--C. Yang, et al. SecureComm ‘16

Problem

How can you tell whether software you
– Develop

– Buy
-Install

is safe to run?

What is Provenance?

● Provenance, a.k.a. lineage of data
○ Data’s life cycle

■ Origins
■ Accesses
■ Deletion

○ Provides confidence in authenticity

● Was the latest data used in the computation?
● Was the data deleted after its use?
● Was the sensitive data sent on network?

Open Provenance Model (OPM)

Process Vertices: Represent dynamic entities
e.g. operating system processes

Artifact Vertices: Represent static elements that are consumed or produced
by processes.

e.g. files, sockets etc.

Edges: Represent dependency between pair of vertices; Directed
● WasTriggeredBy: from a process to another process
● WasGeneratedBy: from an artifact to a process
● Used: from a process to an artifact
● WasDerivedFrom: from an artifact to another artifact.

PID 1002
UID 3002

File1 Sock5

Provenance Graph

● Log all the system events and then make OPM relationships to generate
provenance graphs

● Example: Download file from network and executes it:

Socket0 PID 1002 mal.exe

PID 3092Socket1

file1

Provenance Graph

● Log all the system events and then make OPM relationships to generate
provenance graphs

● Example: Download file from network and executes it:

Socket0 PID 1002 mal.exe

PID 3092Socket1

Used
wasGeneratedBy

Used

Used

wasGeneratedBy
file1

Program Behavior Analysis

Traditional Analysis methods

Static Analysis: Investigates the properties that can be investigated

by inspecting the downloaded app and its source code only. Eg:

Signature based inspection used by anti-virus technologies.

Dynamic Analysis: In this method, app is run in a secure environment

such as sand-box and logs every relevant operation of the app.

Static vs Dynamic Analysis

Static –
● Consider all possible inputs
● Can prove absence of

bugs/vulnerability

● Cannot handle code
obfuscation (Java reflections,
source encryption etc)

● Cannot find vulnerabilities in
RT

● HUGE overhead, reason about
every input

Dynamic –
● Consider some inputs
● Can prove presence of

bugs/vulnerability

● Cannot guarantee the full
coverage of the source code

● May require virtual Machine
instrumentation

Example: Taint Checking Solution for Behavior Analysis

Example: Taint Checking Solution for Behavior Analysis

Require Instrumentation of OS or App

Paper’s Approach

● Collect provenance of the applications behaviors without modifications
and generate provenance graphs

● Pattern match generated provenance graphs with sensitive behavior
patterns

Dagger

● A lightweight system to dynamically vet sensitive behaviors in Android
apps by making provenance graphs.
○ No VMI instrumentation
○ Less Overhead
○ Just tracks apps interactions with underlying platform

● Dagger uses the open source SPADE provenance middleware to collect
three types of low-level execution information:
○ Linux System Calls -- via Strace
○ Android Binder transactions -- via sysfs
○ App process details -- via /prof fs

System Design

● App Executor:
○ Executes the app in a sandbox

● Syscall Collector:
○ Collects the system call invocation

● ProvEst Daemon:
○ Collects information from binder transactions; Builds relationships

between artifacts and process
● Graph Reporter:

○ Outputs Data provenance graph from the relationships made by
ProvEst daemon

● Behavior Identifier:
○ Detects sensitive behaviors from the provenance graph

Dagger runs each app, collect provenance records and perform pattern
matching

Collection of Sensitive Behaviours

● They ran Android apps with selected input that is known a priori to
trigger sensitive behavior

● Dependent on internal working of Android

Example Sensitive Behaviour

Pattern : Read Geolocation:
● An app attempts to read the

geographic location

● Interacts with the Location
Manager Service

● Requests the location from the
GpsLocationProvider.

Provenance Generated from the Behaviour

Evaluations

Evaluated EFFECTIVENESS from three perspectives:
1. Vetting real-world malware case studies

1.1. Gamex: Code Encryption
1.2. Gone60: Privacy Leakage
1.3. Zsone: SMS Service Usage

2. Vetting Android Genome Project malware [S&P 2012]

2.1. 1,260 real-world malware samples collected from the Genome
Project

3. Vetting official market (Google Play) apps
3.1. 1000 apps sampled from 18,527 official market (Google Play)

Evaluations

● Evaluated EFFICIENCY from three perspectives:
(i) CPU overhead
(ii) Memory overhead
(iii) Runtime overhead

● Used AnTuTu (android benchmark app) to test performance

● Both CPU and Memory overhead was less than 10 %
● The runtime overhead is less than 63%

○ Strace overhead

Discussion

What are the key contributions of this paper?

What are the limitations of this paper?

Can we use Provenance Patterns for something else?

BACKUP SLIDES

Taint Analysis
Explicit – Passed in assignments
Implicit – Passed in control flow structures (ICC, Broadcasts, Media)

Data-Flow Analysis
Most use some form of Data Flow Analysis with Taint Analysis
Sources: Location Data, Unique IDs, Call State, Authentication Data and
Contact/Calendar Data
Sinks: SMS Communications, File Output, Network Communication, Intents,
Content Resolver
Examples: TaintDroid (2010), AndroidLeaks (2012)

A
n

d
ro

id
 A

rc
h

it
ec

tu
re

