Watching the Watchers: Automatically Inferring TV Content From Outdoor Light Effusions

 $\bullet \bullet \bullet$

Yi Xu, Jan-Michael Frahm and Fabian Monrose CCS 2014

Bart Kosciarz

Introduction + Why Should You Care?

Exploit emanations of changes in light to reveal TV content

Can be done from 70+ meters away

Privacy concerns

- Religious beliefs, political views, private things
- ✤ U.S. Video Privacy Act of 1998
- ✤ 67% of people watch TV during dinner

Related Work

Power usage + power line electromagnetic interference

Depends on TV model / structure of power system

Shiny object reflections

- ✤ Recover static image
- ✤ Require a view of the screen

Overview

Can we infer content based on brightness changes in a room?

Sugar, Spice, and Everything Nice

What we care about to pull this off

- Quality of captured information (SNR)
- Entropy of observed information
- ✤ Length of captured signal
- Size + uniqueness of reference library

Methodology - Feature Extraction

- Compute average pixel brightness for each frame
- Gradient of average brightness signal is what we care about
 - \succ 95% of consecutive frames have the same average intensity
- Feature vector = composition of peaks

Also do this for every video in the database

Methodology - Finding the Best Match

Nearest neighbor search across subsequences

Similarity metric for correlation between two signals

- ✤ Assumes the same starting point of both signals
- Computationally hard to exhaustively search
- ✤ Takes around 188 seconds to locate a video from 54,000 videos

Methodology - Finding the Best Match

- Sliding window of length 512 over the gradient feature
- Omit all peaks below 30% of the strongest peak's magnitude
- Compute histogram of pairwise distance between peaks

- Index peak features in a K-d tree
- "Found" when best match is stable for 3 iterations
- Search time goes down to 10 seconds

Reference Library

- ✤ 10,000 movies
- ✤ 24,000 news clips
- ✤ 10,000 music videos
- ✤ 10,000 TV shows

Over 18,800 hours of video

Extract feature vectors for all of these

Experimental Setup

Record the reflection of TV from a white wall

Distance of 3 meters

Randomly select 62 sequences from the library

Capture with

Logitech HD Pro Webcam C92060D Canon DSLR

Standard test

Lights off

24 inch screen

Random starting point

Capture Length	60s	90s	120s	180s	240s	270s
Success Rate	39%	49%	54%	70%	85%	94 %

Impact of Room Brightness

Capture 5 videos in 3 different settings

Illumination settings	SNR	Segment Length
Normal brightness level room light off	70	180s
50% brightness level room light off	33	270s
Normal brightness level room light on	15	300s

Impact of Screen Size

Screen Size	SNR	Worst Case Length
24 inch	5	270s
30 inch	48	180s
50 inch	109	180s

Other Factors + Tests

Library Size

- ✤ Vary size from 4,000 to 54,000 videos (x 13.5)
- ✤ Worst case length from 200s to 240s (x 1.2)

Outdoors

- ✤ Attacker positioned on sidewalk
- Observing 3rd floor office window

Outdoors - Results

Various distance tests

Average worst case

100 seconds at 13.5m
190 seconds at 70.9m

Mitigations

Curtains

- Vinyl: 3/4 videos after 270 seconds
 <u>Black</u>: 0/4 videos
- Lower screen brightness

Flood light

Blinds camera but doesn't thwart HDR

Adaptive lighting system

Discussion

What are the key contributions of this paper?

What are the limitations of this approach/Is this attack practical?

How much do people actually care about being targeted by this?