Do You Hear What I Hear? Fingerprint Smart Devices Through Embedded Acoustic Components

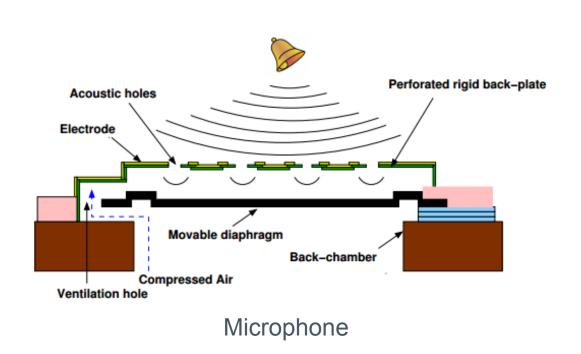
A.Das, N.Borisov, M.Caesar CCS 2014

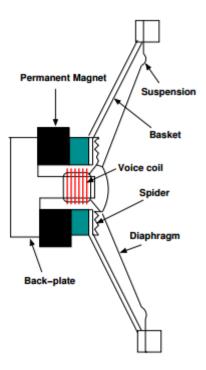
Presented by Siddharth Murali

Fingerprinting smartphones

- > Being able to uniquely identify a smartphone
- > Why is this important?
 - Tracking mobile phones
 - User based advertising

Fingerprinting smartphones


- > Being able to uniquely identify a smartphone
- Software methods
 - Timing analysis of network packets
 - Fonts installed in browsers
 - Browsing history
 - Nmap, Xprobe, able to identify unique responses from the networking stack


Fingerprinting smartphones

- > Hardware methods
 - Using clock skews of network devices
 - Radio transmitters
 - Network interface cards
 - Smartphone accelerometers
 - Now, acoustic components like speakers, microphones

Microphones and Microspeakers

> Based on MEMS technology

Microspeaker

Classification Algorithms

- > k-Nearest Neighbors
 - Computes distance to learned data points, and classifies our data point based on nearest k data points.
- › Gaussian Mixture Model
 - Computes probability distribution for each class, and determines maximal likely association

Testing and results

 For analysis of the audio, they used MIRToolbox, Netlab, Audacity, Hertz

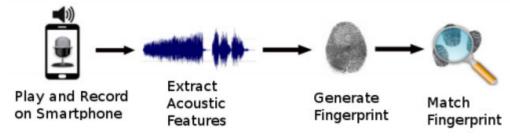
> Each sample audio was recorded 10 times, 50% for training and 50% for testing


Table 3: Types of audio excerpts

Type	Description	Variations
Instrumental	Musical instruments playing together, e.g., ringtone	4
Human speech	Small segments of human speech	4
Song	Combination of human voice & instrumental sound	3

Maker	Model	Quantity				
Apple	iPhone 5	1				
Google	Nexus One	14				
Google	Nexus S	8				
Samsung	Galaxy S3	3				
Samsung	Galaxy S4	10				
Motorola	Droid A855	15				
Sony Ericsson	W518	1				
Tota	Total					

Testing and results


> Fingerprinting the speaker

> Fingerprinting the microphone

> Fingerprinting both speaker and microphone

Testing and results – Different model and make

Table 5: Fingerprinting different smartphones using speaker output

Audio		k-N	IN			GMM			
Type	Features*	AvgPr	AvgRe	AvgF1	Features*	AvgPr	AvgRe	AvgF1	
Instrumental	[1,7]	97.6	97.1	97.4	[13]	100	100	100	
Human speech	[13]	95.2	94.3	94.8	[13]	100	100	100	
Song	[15]	97.6	97.1	97.4	[13]	100	100	100	

Table 6: Fingerprinting different smartphones using mic

Audio		k-N	IN		GMM			
Type	Features*	AvgPr	AvgRe	AvgF1	Features*	AvgPr	AvgRe	AvgF1
Instrumental	[13,1]	95.2	94.3	94.8	[13,1,7]	100	100	100
Human speech	[15,9,1]	95.2	94.3	94.8	[13,15,11]	97.6	97.1	97.4
Song	[13,1,12]	97.6	97.1	97.4	[13,1,9]	100	100	100

Table 7: Fingerprinting different smartphones using mic & speak

Audio		k-N	NN		GMM			
Type	Features*	AvgPr	AvgRe	AvgF1	Features*	AvgPr	AvgRe	AvgF
Instrumental	[10]	96.7	96	96.3	[13]	100	100	100
Human speech	[12]	96.7	96	96.3	[13]	100	100	100
Song	[10]	96.7	96	96.3	[13]	100	100	100

Testing and results – Same model and make

Table 9: Fingerprinting similar smartphones using speaker output

Audio		k-N	IN		GMM			
Type	Features*	AvgPr	AvgRe	AvgF1	Features*	AvgPr	AvgRe	AvgF1
Instrumental	[13,14]	96.7	96	96.3	[13,14]	98.4	98.1	98.3
Human speech	[13]	98.9	98.7	98.8	[13,14]	98.9	98.7	98.8
Song	[13,7]	93.2	92	92.6	[13,14]	95.6	93.3	94.5

Table 10: Fingerprinting similar smartphones using microphone

Audio		k-N	N		GMM			
Type	Features*	AvgPr	AvgRe	AvgF1	Features*	AvgPr	AvgRe	AvgF1
Instrumental	[13,8,12]	95.9	94.7	95.3	[13,8,12]	96	94.7	95.3
Human speech	[13]	98.9	98.7	98.8	[13,14]	100	100	100
Song	[13,14,10]	96.4	96	96.2	[13,14]	96.5	95.7	96.1

Table 11: Fingerprinting similar smartphones using mic & speaker

Audio		k-N	NN		GMM			
Type	Features*	AvgPr	AvgRe	AvgF1	Features*	AvgPr	AvgRe	AvgF1
Instrumental	[13]	100	100	100	[13]	100	100	100
Human speech	[13]	100	100	100	[13]	100	100	100
Song	[13]	100	100	100	[13]	100	100	100

Testing and results – All combinations

Results show that malicious applications that have access to mic and speakers can fingerprint smartphones with an accuracy of over 98%

Table 13: Fingerprinting all smartphones using mic & speaker

Audio		k-N	IN		GMM			
Type	Features*	AvgPr	AvgRe	AvgF1	Features*	AvgPr	AvgRe	AvgF1
Instrumental	[13]	99.3	98.8	99	[13]	98.6	98.1	98.3
Human speech	[13]	99.7	99.6	99.6	[13]	99.4	99.2	99.3
Song	[13]	99.7	99.6	99.6	[13]	100	100	100

Sensitivity analysis

- > Impact of sampling rate
 - Lower sampling rate led to reduced accuracy
- > Impact of training size
 - Lower training size also led to reduced accuracy

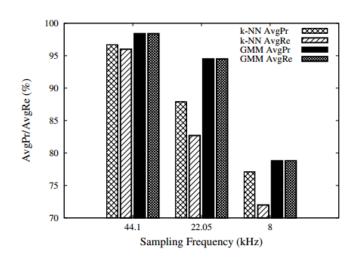


Table 14: Impact of varying training size

Training		k-NN		GMM			
samples	Fe	atures [13,	14]*	Features [13,14]*			
per class	AvgPr	AvgRe	AvgF1	AvgPr	AvgRe	AvgF	
1	42	49.3	45.3	50	53.3	51.6	
2	79.2	80	79.6	80.4	80	80.2	
3	91.3	89.3	90.2	91.7	89.3	90.5	
4	95.3	94.7	95	95.6	94.7	95.1	
5	96.7	96	96.3	98.4	98.1	98.3	

Sensitivity analysis

> Varying distance between speaker and recorder

Table 15: Impact of varying distance

Distance		k-NN		GMM				
(in meters)	Fe	atures [13,1	14]*	Fe	Features [13,14]*			
(in ineters)	AvgPr	AvgRe	AvgF1	AvgPr	AvgRe	AvgF1		
0.1	96.7	96	96.3	98.4	98.1	98.3		
1	92.7	91.5	92	95.2	94.7	94.9		
2	88.2	87.6	87.9	94.5	92	93.2		
3	76.7	76	76.3	78.9	84	81.4		
4	70.2	64	67	76.8	76	76.4		
5	64.5	62.7	63.6	77	73.3	75.1		

> Ambient background noise

Table 16: Impact of ambient background noise

	. SNR		k-NN		GMM			
Environments		Fe	atures [13,	[4]*	Features [13,14]*			
	(dB)	AvgPr	AvgRe	AvgF1	AvgPr	AvgRe	AvgF1	
Shopping Mall	15.85	88.8	85.3	87	95.1	93.3	94.2	
Restaurant/Cafe	17.77	90.5	89.7	90.1	92.5	90.7	91.6	
City Park	15.43	91.7	90	90.8	95.2	94.1	94.6	
Airport Gate	14.92	91.3	89.5	90.4	94.5	93.3	93.9	

Discussion

- > Key contributions of the paper?
- > Limitations/criticisms of the paper?
- Accelerometer vs Acoustic for fingerprinting
- Can we use permissions to prevent this? Other methods?