
(sp)iPhone: Decoding
Vibrations From Nearby
Keyboards
Using Mobile Phone
Accelerometers

By Ren-Jay Wang

Philip Marquardt et al.

ACM Computer and Communications Security 2011

CS598 - COMPUTER SECURITY IN THE PHYSICAL WORLD

An old kind of attack

How do we fix this problem?

u  Easy solution: users provide explicit permission

A new kind of attack

u  We can use mobile phone accelerometers to detect vibrations

Related electrical/mechanical
emanation attacks

u  Van Eck Phreaking (CRT electromagnetic emanations)

u  Tempest in a teapot: Compromising Reflections Revisited

u  Recreating key presses through a microphone

The new attack

u  Many users place their phones nearby when working on a computer

u  We can use this fact to our advantage to eavesdrop

The result of trying old techniques

u  We choose to use an iPhone 4 because it has a better accelerometer & gyroscope

…doesn’t work

So what do we do next?

u  We choose to recognize key pairs instead of individual keys

u  We recognize whether keys are on the LEFT or RIGHT relative to a central line
and if they are NEAR or FAR relative to some defined threshold distance α

u  For example, “Canoe” ->

LLN LRF RRF RLF

u  Strings of length n can be split into n-1 abstract string representations

Creating our own neural network model
Step 1: Learning phase

u  Record each key press 150 times (total 3900 key-press events)

u  Create feature vector for each key drawing from x,y,z accelerations =>
<mean, kurtosis, variance, min, max, energy, rms, mfccs, ftts>

u  Word labeling: for each n-1 character pairs, concatenate random feature
vectors for the corresponding keys

u  Can’t be too specific -> to avoid overtraining, use even distribution of left,
right, near and far labels

Creating our own neural network model
Step 2: Attack phase
u  Data Collection: Raw-acceleration data is collected

u  Feature Extraction: Feature-vectors are calculated

u  Key-press Classification: L/R labels and N/F labels are classified based on
the neural networks

u  Word Matching: Words are matched against a dictionary and sorted; top
scores are candidate predictions

How well does our model perform?

u  L/R classifier correctly identifies 91% of the time

u  N/F classifier correctly identifies 65% of the time

u  These percentages drop with more keypresses, which is to be expected

Experimental Results – Tests 1 and 2

u  Removed words of <= 3 characters

u  Test 1: 1 sentence -> 80% accuracy using first choice

u  Test 2: 10 sentences -> 46% using first choice, 73% within first two choices

<- Test 1

Test 2 ->

Experimental Results – Test 3

u  Comparison to previous work by Berger et al., using dictionary of 57,500
words and sentence with 4-9 characters per word

u  Berger: 43% accuracy within top 10 word guesses

u  Experimental result: 43% as well!

u  Experimental results less accurate than Berger when increasing the number of
guesses…limitations?

Experimental Results – Test 4

u  A more realistic attack – USAToday article

u  Dictionary constructed using seven related news articles

u  40% in first choice, 53% in top 2, and 80% accuracy in top 5 predictions

Challenges and Limitations

u  Distance and environmental factors – only sure to work within one foot

u  Orientation of the phone

u  Ambient vibration

u  Typing speed

u  Desk surface

How do we fix this vulnerability

u  Short term solutions

•  Don’t get too close!

•  Permissions on accelerometer

u  Long term solutions

•  Restricting data resolution to applications

•  Being careful with all kinds of sensors in the future!

Discussion Points

u  Key contributions of the paper?

u  Limitations to this attack?

u  Is this paper relevant to other areas of security?

u  Thoughts on improving the accuracy/effectiveness of the attack?

u  What are ways we can combat these kinds of attacks?

