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An old kind of attack 



How do we fix this problem? 

u  Easy solution: users provide explicit permission 



A new kind of attack 

u  We can use mobile phone accelerometers to detect vibrations 



Related electrical/mechanical 
emanation attacks 

u  Van Eck Phreaking (CRT electromagnetic emanations) 

u  Tempest in a teapot: Compromising Reflections Revisited 

u  Recreating key presses through a microphone 



The new attack 

u  Many users place their phones nearby when working on a computer 

u  We can use this fact to our advantage to eavesdrop 



The result of trying old techniques 

u  We choose to use an iPhone 4 because it has a better accelerometer & gyroscope 

…doesn’t work 



So what do we do next? 

u  We choose to recognize key pairs instead of individual keys 

u  We recognize whether keys are on the LEFT or RIGHT relative to a central line 
and if they are NEAR or FAR relative to some defined threshold distance α 

u  For example, “Canoe” -> 

LLN LRF RRF RLF 

u  Strings of length n can be split into n-1 abstract string representations 



Creating our own neural network model 
Step 1: Learning phase 

u  Record each key press 150 times (total 3900 key-press events) 

u  Create feature vector for each key drawing from x,y,z accelerations => 
<mean, kurtosis, variance, min, max, energy, rms, mfccs, ftts> 

u  Word labeling: for each n-1 character pairs, concatenate random feature 
vectors for the corresponding keys 

u  Can’t be too specific -> to avoid overtraining, use even distribution of left, 
right, near and far labels 



Creating our own neural network model 
Step 2: Attack phase 
u  Data Collection: Raw-acceleration data is collected 

u  Feature Extraction: Feature-vectors are calculated 

u  Key-press Classification: L/R labels and N/F labels are classified based on 
the neural networks 

u  Word Matching: Words are matched against a dictionary and sorted; top 
scores are candidate predictions 



How well does our model perform? 

u  L/R classifier correctly identifies 91% of the time 

u  N/F classifier correctly identifies 65% of the time 

u  These percentages drop with more keypresses, which is to be expected 



Experimental Results – Tests 1 and 2 

u  Removed words of <= 3 characters 

u  Test 1: 1 sentence -> 80% accuracy using first choice 

u  Test 2: 10 sentences -> 46% using first choice, 73% within first two choices 

<- Test 1 

Test 2 -> 



Experimental Results – Test 3 

u  Comparison to previous work by Berger et al., using dictionary of 57,500 
words and sentence with 4-9 characters per word 

u  Berger: 43% accuracy within top 10 word guesses 

u  Experimental result: 43% as well! 

u  Experimental results less accurate than Berger when increasing the number of 
guesses…limitations? 



Experimental Results – Test 4 

u  A more realistic attack – USAToday article 

u  Dictionary constructed using seven related news articles 

u  40% in first choice, 53% in top 2, and 80% accuracy in top 5 predictions 



Challenges and Limitations 

u  Distance and environmental factors – only sure to work within one foot 

u  Orientation of the phone 

u  Ambient vibration 

u  Typing speed 

u  Desk surface 



How do we fix this vulnerability 

u  Short term solutions 

•  Don’t get too close! 

•  Permissions on accelerometer 

u  Long term solutions 

•  Restricting data resolution to applications 

•  Being careful with all kinds of sensors in the future! 



Discussion Points 

u  Key contributions of the paper? 

u  Limitations to this attack? 

u  Is this paper relevant to other areas of security? 

u  Thoughts on improving the accuracy/effectiveness of the attack? 

u  What are ways we can combat these kinds of attacks? 


