
Defending	against	malicious	peripherals	
with	Cinch

Presented	by	Avesta	Hojjati
CS598

Computer	Security	in	the	Physical	World	
University	of	Illinois

Based	on	slides	by	Sebastian	Angel



Citation

• S.	Angel,R.	Wahby,	M.	Howald,	J.	Leners,	M.	Spilo,	Z.	Sun,	A.	
Blumberg,	M.	Walfish.	"Defending	against	Malicious	Peripherals	
with	Cinch."	USENIX	Security	2016



Peripherals’	firmware	can	be	modified	with	BadUSB [Nohl and	Lell,	Black	Hat	2014]

USB	architecture	from	30,000	feet

Your	machine

Drivers

Host	Controller Hu
b

Government	agencies	intercept	and	modify	shipments	[Glenn	Greenwald,	The	Guardian	2014]



Peripherals	can	exploit	driver	vulnerabilities

13	vulnerabilities	in	Linux’s	USB	stack	reported	in	2016	alone

Your	machine

Drivers

Host	Controller

$@$#$#%$%

Hu
b



Peripherals	can	leverage	DMA	to	attack	OSes

Your	machine

Drivers

Host	Controller

write	“evil”	to	<kernel	address>

Inception [Maartmann-Moe	2014], Funderbolt [Black	Hat	2013]
Hu

b



Users	Really	Do	Plug	in	USB	Drives	They	Find	
[Tischer et	al.,	S&P	2016]

Peripherals	can	lie	about	their	identity

Your	machine

Drivers

Host	Controller

Hi,	what	are	you?

Hu
b

I’m	a	keyboard	J



Hubs	broadcast	messages	downstream

Compromised	hubs	can	eavesdrop	and	modify	all	traffic

Your	machine

Drivers

Host	Controller

File_for_SSD.txt

Hu
b

File_for_SSD.txt



• Don’t	use	a	computer

• Close	all	the	ports

Okay,	so	what	can	we	do?



As	part	of	this	interaction,	our	machine	routinely:

• Determines	to	whom	it	is	talking

• Prevents	eavesdropping	and	data	tampering

• Defends	against	malicious	traffic

Our	machine	interacts	with	untrusted	devices	every	
day…	on	the	Internet!



How	do	we	apply	the	arsenal	of	network	security	
tools	to	peripheral	buses?

And	how	can	this	be	done	with	minor	or	no	
modifications	to	OSes	and	existing	devices…

…while	keeping	the	bus	at	arm’s	length?
Your	machine

Drivers

Host	Controller

Insert	network	security	logic	
somewhere	here



• Making	peripheral	buses	look	“remote”,	preventing	direct	action	
with	the	rest	of	the	computer	

• Traffic	between	the	“remote”	devices	and	rest	of	the	computer	
should	travel	through	a	“narrow	choke	point”,	this	is	essential	to	
apply	defense	

• The	solution	should	NOT	require	modification	of	the	bus
• Portability,	no	re-design,	or	re-implementation	for	different	OSes
• Flexibility	and	extensibility
• Imposing	reasonable	overhead

Design	requirements



• Cinch	is	effective	(but	not	perfect!)	against	the	threats	described

• Cinch	is	portable	and	backwards-compatible
– Works	transparently	across	OSes
– Requires	no	driver	or	USB	protocol	modifications

• Cinch	separates	the	bus	from	your	machine,	creating	an	enforcement	point

Cinch	brings	network	defenses	to	USB

Your	machine

Drivers

Ho
st
	

Co
nt
ro
lle
r

peripherals

Hu
b

En
fo
rc
er



• How	did	they	build	Cinch?

• What	defenses	can	be	built	on	Cinch?

• How	well	do	defenses	work	and	what	is	their	cost?

In	the	rest	of	this	talk…



• How	did	they	build	Cinch?

• What	defenses	can	be	built	on	Cinch?

• How	well	do	defenses	work	and	what	is	their	cost?

In	the	rest	of	this	talk…



• Where	and	how	can	one	create	a	logical	separation	between	the	
bus	and	the	host,	while	arranging	for	an	explicit	communication	
channel	that	a	policy	enforcement	mechanism	can	interpose	on?

• How	can	one	instantiate	this	separation	and	channel	with	no	
modifications	to	bus	standards,	OSes,	or	driver	stacks?

What	do	we	need	to	answer?



Your	machine

Drivers
Hu

b

Ho
st
	C
on

tr
ol
le
r

Your	machine

Host	Controller

Drivers

Hu
b

What	we	have	today

What	we	want



Devices	can	be	attached	to	another	machine

Your	machine

Drivers

sacrificial	machine

Host	Controller

Drivers

But	this	requires	an	additional	machine…

Pragmatic	choice:	leverage	virtualization	technology	to	
instantiate	the	(sacrificial)	machine	on	the	same	hardware

Hu
bnetwork



An	IOMMU	can	be	used	to	restrict	where	in	memory	a	
device	may	write

VM

Hypervisor

Virtual	Card

VM

Hypervisor

IOMMU
Data

Data Data

Device	can	only	write	to	configured	addresses

Restrict	I/O	to	VM’s	address	space

Evil



Your	machine

Host	Controller

Drivers

Hu
b

What	we	have	today

Your	machine	(VM)

Drivers

sacrificial	machine	(VM)

Host	Controller

Drivers

Hu
bnetwork

Hypervisor

Under	Cinch

Hypervisor	configures	IOMMU	to	
map	bus	to	sacrificial	machine

Devices	are	attached	to	a	sacrificial	VM



Your	machine	(VM)

Drivers

sacrificial	machine	(VM)

Host	Controller

Drivers

Hu
b

Interposing	on	VM-VM	communication

Enforcer’s	design	is	inspired	by	the	Click	modular	router	[Kohler	et	al.,	ACM	TOCS	2000]

En
fo
rc
er

Module	3	 Module	2	 Module	1	



The	architecture	of	Cinch

Enforces	
security	
policy

Normal	OS	
with	

stripped	
down	USB	
STACK

Driver	



• How	did	they	build	Cinch?

• What	defenses	can	be	built	on	Cinch?

• How	well	do	defenses	work	and	what	is	their	cost?

In	the	rest	of	this	talk…



Defense	1:	Enforcing	allowed	device	behavior

USB	specifications Constraints	on:
• Packet	formats
• Individual	fields
• Packet	sequences

• Restricted	field	values
• Sizes	within	allowed	range
• Proper	encoding	(e.g.	UTF-16)



Defense	1:	Enforcing	allowed	device	behavior

USB	specifications Constraints	on:
• Packet	formats
• Individual	fields
• Packet	sequences

• States	based	on	history
• Transitions	based	on	
incoming	packets

Allow	/	Drop	packet



Defense	2:	Filtering	known	exploits

Download		/	populate	database	
with	known	malicious	signatures

Inspect	incoming	traffic	
for	matches

Allow	/	Drop	packet



• Quick	response	to	an	attack
– Deriving	a	signature	is	usually	faster	than	understanding	the	exploit	and	
finding	the	root	cause

• Useful	for	closed-source	OSes
– No	need	to	wait	for	OS	vendor	patch	vulnerability

Benefits	of	signature-based	defenses



• Cannot	prevent	zero-day	attacks

• Tension	between	protection	and	compatibility
– Exact	signatures	are	not	very	effective
– Very	general	signatures	(e.g.	wildcard	/	regex)	can	prevent	benign	traffic	

• Signatures	do	not	fix	the	underlying	problem

Limitations	of	signature-based	defenses



Defense	3:	authentication	and	encryption



Defense	3:	authentication	and	encryption

Your	machine	(VM)

Drivers

En
fo
rc
er

sacrificial	machine	(VM)

Host	Controller

Drivers

Hu
b

Unauthenticated	cleartext communication



Defense	3:	authentication	and	encryption

Authenticated	and	encrypted	communicationCleartext

Install	TLS	endpoint	at	device	and	enforcer

Your	machine	(VM)

Drivers

En
fo
rc
er

sacrificial	machine	(VM)

Host	Controller

Drivers

Hu
b



Defense	3:	authentication	and	encryption

CleartextAuthenticated	and	encrypted	communicationCleartext

Existing	devices	can	be	retrofitted	with	an	adapter

Your	machine	(VM)

Drivers

En
fo
rc
er

sacrificial	machine	(VM)

Host	Controller

Drivers

Hu
b



• Compliance	with	the	USB	specification
– Prevents	certain	types	of	driver	bugs	from	being	exploited

• Signature	matching
– Prevents	known	exploits	and	can	be	used	as	a	quick	response

• Authentication	and	encryption
– Prevent	masquerading	and	eavesdropping	on	the	bus

• Other:	Log	and	replay,	remote	auditing,	exporting	functionality	via	
higher-layer	protocols	(e.g.,	access	flash	drives	via	NFS)

Summary	of	defenses



• How	did	they	build	Cinch?

• What	defenses	can	be	built	on	Cinch?

• How	well	do	defenses	work	and	what	is	their	cost?

In	the	rest	of	this	talk…



• Hypervisor	is	Linux	running	QEMU/KVM

• Enforcer	is	a	Linux	user-level	process	and	it	is	written	in	Rust

• USB	transfers	are	encapsulated/decapsulated in	TCP/IP

• They	built	the	TLS	adapter	on	a	Beaglebone Black	(arm-based	
computer)

• They	implemented	exploits	using	a	facedancer21						à

Implementation	details



How	well	do	defenses	work?



• They	implemented	exploits	for	existing	USB	driver	vulnerabilities

• They	carried	out	a	3-phase	penetration	testing	exercise

• They	used	a	fuzzing	tool	to	test	10,000	invalid	devices
– Summary:	Cinch’s	enforcer	prevents	all	10,000	
– Subtlety:	None	of	the	tests	affected	a	machine	without	Cinch	either

Evaluation	of	Cinch’s	effectiveness	happens	in	3	ways



• Linux	CVEs	reported	from	Jan	to	June	2016.	They	affect	Linux	4.5.1

• 5	exploits	that	work	on	Windows	8.1	

[Boteanu and	Fowler,	Black	Hat	Europe	2015]

They	implemented	exploits	for	existing	USB	driver	vulnerabilities

Their	findings:
• 16	out	of	18	exploits	were	prevented	immediately

• 2	exploits	succeeded,	but	can	be	prevented	with	a	signature



• Phase	1:	Red	team	has	vague	knowledge	of	Cinch
• Phase	2:	Red	team	has	access	to	a	pre-configured	Cinch	binary
• Phase	3:	Red	team	has	Cinch’s	source	code

They	carried	out	a	3-phase	penetration	testing	exercise

Their	findings:

• Increased	knowledge	of	Cinch’s	functionality	resulted	in	more	
intricate	exploits

• Cinch	is	not	able	to	prevent	polymorphic	attacks



What	is	the	cost	of	these	defenses?



Baseline:	connecting	devices	directly	to	your	machine

Experiment	1:	transferring	1	GB	file	to	a	USB	3.0	SSD

• Throughput	reduction:	38%															(due	to	memory	copies)
• Memory	overhead:	200	MB															(due	to	sacrificial	VM)
• CPU	overhead:	8X																																(due	to	virtualization	and	enforcer)

Experiment	2:	ping	from	a	remote	machine	using	USB	Ethernet	adapter

• Round-trip	time	increase:	~2	ms

Performance	evaluation	highlights



• Weak	against	polymorphic	attacks	on	vulnerable	drivers

• Requires	identifying	trusted	manufacturers

• Requires	device	support	(or	an	adapter)	for	TLS

• Requires	hardware	support	for	virtualizing	IO	(IOMMU)

Cinch	brings	network	defenses	to	USB…

…	but	it	also	inherits	their	limitations



• Cinch	provides	a	backward-compatible	and	portable	way	of	
enhancing	peripheral	buses	with	tools	from	network	security

• Cinch’s	enforcer	is	modular	and	defenses	are	natural	and	easy	to	
implement

• Cinch	is	not	perfect,	but	eliminates	some	attack	classes	and	
increases	the	barrier	for	others

Summary



• What	do	you	think	about	their	work	compare	to	GoodUSB &	
USBFILTER?

• Is	the	38%	throughput	reduction worth	it?
• Any	fundamental	issues	with	QEMU	and	KVM	model?
• USBee
• Can	GoodUSB,	USBFILTER,	Cinch;	protect	us	against	USBee?

Discussion


