

CS 598 - Computer Security in the Physical World: USB Security

Professor Adam Bates Fall 2016

Course Updates

- Due today: Summaries for USBFILTER / GoodUSB
- Moving forward, summaries for papers are due midnight before class.
- First Project Deadline: Project Ideas, September 6th

Presenting a Paper

- Requires the technical preparation necessary for writing a summary, but also much more!
- Audience engagement is vital
 - Construct a narrative
 - Engage the audience
 - Identify an insight
 - Argue a point
 - Extend an argument
- Relate what you've learned, and what strikes you about the work: be engaged with the content

Presentation Advice

- Keep your points simple and repeat key insights
- Know the jargon that you will be using
- Present a narrative tell a story
- Pace the talk so that you're not rushing or dragging
- Think about the goals of your presentation
 - Leave audience with the high points in their head
- Practice and prepare!
- Read <u>http://pages.cs.wisc.edu/~markhill/conference-talk.html</u>

Behold, USB....

- Universal Serial Bus
 - USB 1.0/2.0/3.0/3.1/Type-C
- Speed
 - 10 gigabits per second
- Ubiquitous

McAfee[®]

Malware Scrubbing Cyber Security Kiosk

STOP SCAN

SCAN ENTER

McAfee[®]

Malware Scrubbing

STOP (111010)

ENTER

SCAN

Norton

MOLEA

Cyber Security Kiosk

iii 🚐

BadUSB - On Accessories that Turn Evil by Karsten Nohl + Jakob Lell

McAfee

Malware Scrubbing

STOP (1111010 0011010

ENTER

SCAN

Norton

MOLEA

Cyber Security Kiosk

11 **223**

BadUSB - On Accessories that Turn Evil by Karsten Nohl + Jakob Lell

SALE PRICE

\$42.99

USB RUBBER DUCKY

The state of the second

THE MOST LETHAL DUCK EVER TO GRACE AN UNSUSPECTING USB PORT

BadUSB - On Accessories that Turn Evil by Karsten Nohl + Jakob Lell

SALE PRICE

\$42.99

USB RUBBER DUCKY

The state of the set

THE MOST LETHAL DUCK EVER TO GRACE AN UNSUSPECTING USB PORT

JAN SHIM PHOTOGRAPH

McAfee

Norton

Penetration Tools

USB RUBBER DUCKY

THE MOST LETHAL DUCK EVER TO GRACE AN UNSUSPECTING USB PORT

Write

payloads with a **simple scripting language** or online payload generator including

- WiFi AP with disabled firewall
- Reverse Shell binary injection

TXT

- Powershell wget & execute
- Retrieve SAM and SYSTEM
- Create Wireless Association

Load

the micro SD card into the ducky then place inside the generic USB drive enclosure for covert deployment.

Encode

the Ducky Script using the cross-platform open-source duck encoder, or download a pre-encoded binary from the online payload generator.

Carry multiple payloads, each on its own micro SD card.

Deploy

the ducky on any target Windows, Mac and Linux machine and watch as your payload executes in mere seconds.

What went wrong?

USB Interfaces represent a set of unrestricted host permissions.

- OS knows nothing about the device
 - but loads drivers to make the device happy anyway!
- User knows something about the device...
 - E.g., from the appearance of the device
 - but no one is asking them about it!

Today we're going to explore two papers that work within existing constraints to try and mitigate the threat of BadUSB...

- I. GoodUSB
- 2. USBFILTER

- <u>Encodes user's expectations to authorize USB</u> <u>activity</u>
 - Let the user determine what the device should do
- Tracks device's claimed identity
 - Let the OS recognize if the device appears to have been plugged in before
- Profiles suspicious devices in virtualized honeypot
 - Let the user see what the device

Design Challenges

- 1. How can we mediate USB Enumerations?
- 2. How can we verify the identity of USB devices?
- 3. If a device is suspicious, what can we do about it?

USB Mediator

- GoodUSB sits between the user and the device
 - Enforcing policies
 - Redirecting devices to honeypot

USB Mediator

- GoodUSB is implemented in the Linux kernel
 - Identifying the device firmware
 - Enforcing polices at the driver level

System Overview

Kernel Enhancements

- Device Class Identifier
 - SHAI (USB descriptors)
- Kernel Hub Thread Instrumentation
 - Suspend the driver binding
- Netlink Socket
 - Communicate with the user-space

Policy Mapping

Flash Drive

Storage

Headset

Audio HID

Smartphone

Storage

Charger

Identifying USB Devices

Product: Logitech USB Headset Manufacturer: Logitech <u>Configuration Num: 1</u> <u>Interface Total Num: 4</u> Please choose the desired device functionality:

- Pick Device Description
- USB Storage (thumb drive, portable disk, SD reader)
- O USB Keyboard
- O USB Mouse
- USB Joystick
- O USB Wireless
- USB Cellphone (iPhone, Nexus, Galaxy)
- USB Tablet (iPad, Nexus, Tab)
- USB Microphone
- USB Sound (sound card, speaker, headph
- USB Hub (USB port extension)
- USB Video (WebCam)
- O USB Headset
- USB Charger (E-cig, portable battery, toy)
- USB Communication (USB-USB networking, ATM/Ethernet)
- USB Printer
- USB Scanner
- USB UNKNOWN

I already registered this device!

Reigister device

GoodUSB: Do you recognize the device?

product: Logitech usb headset manufacturer: Logitech <u>Configuration Num: 1</u> <u>Interface Total Num: 4</u> Device Description: USB Headset

🙆 🚍 🗉 GoodUSB: Select a Security Picture

Product: Logitech USB Headset Manufacturer: Logitech

Suspend Registration

Complete Registration

Profiling USB Devices

• QEMU KVM

- USB device pass-thru vs. USB host controller pass-thru
- USB Monitor
 - A udev rule to start USB device profiling
- USB Profiler
 - Generate a comprehensive USB device report for inspection
 - usbmon, lsusb, usbhid-dump, usb-devices, tcpdump

Profiling USB Devices

usbpro HID analyzer started:

_F2__x_t_erm_ENTER _p_w_d_ENTER _i_d_ENTER _c_a_t_SPACE/etc/passwd_ENTER

usbpro HID analyzer done

Evaluation

- USB Headset
- USB Rubber Ducky
- Teensy 3.1
- Smartphones

Overhead in Microseconds

1st **Enumeration Subsequent Enumerations** Honeypot Redirection

7 (5.2%)

7 (5.0%)

262.1 (N/A)

Discussion Questions

- What are the key contributions of the paper?
- What are the limitations to this approach?
- Why does GoodUSB ask for the user's opinion?
- How effectively was this idea developed?
- Criticisms / limitations of the paper?
- Do you buy this idea? Would this work well in a realistic workplace to protect against social engineers?

Rule #1 of Conference Presentations....

Never miss out on a good branding opportunity!

vacy Research at Illinois (SPRAI)

Reference Monitor

- Complete mediation
- Tamperproof
- Verifiability
- Granularity
- Extensibility

Rule Constructions

Proces	pid,ppid,pgid,uid,euid,gid,egid,comm
Device	bus#,dev#,port#,if#,devpath,manufacturer,
Packet	type,direction,endpoint,address
LUM	name

Rule Consistency

General conflict

 $general_conflict(R_a, R_b) \leftarrow \\ \forall C_i \ni \mathscr{C} : \\ (\exists C_i^a \ni R_a \land \exists C_i^b \ni R_b \land value(C_i^a) \neq value(C_i^b)) \lor \\ (\exists C_i^a \ni R_a \land \not\exists C_i^b \ni R_b) \lor \\ (\not\exists C_i^a \ni R_a \land \not\exists C_i^b \ni R_b).$

• Weak conflict

Strong conflict

weak_conflict(R_a, R_b) \leftarrow general_conflict(R_a, R_b) \wedge action(R_a) = action(R_b).

 $strong_conflict(R_a, R_b) \leftarrow$ $general_conflict(R_a, R_b) \land action(R_a) \neq action(R_b).$

Linux USBFILTER Modules (LUM)

- User-defined extension for USBFILTER
 - linux/usbfilter.h>
- Rule construction unit
 - writing new rules with LUM
- Looking into the USB packet

• SCSI commands, IP packets, HID packets, and etc.

LUM: Detect SCSI Write

20 int lbsw filter urb(struct urb *urb) 21 { 22 char opcode; 23 24 /* Has to be an OUT packet */ 25 if (usb_pipein(urb->pipe)) 26 return 0; 27 /* Make sure the packet is large enough */ 28 29 if (urb->transfer_buffer_length <= LUM_SCSI_CMD_IDX)</pre> 30 return 0; 31 32 /* Make sure the packet is not empty */ 33 if (!urb->transfer_buffer) 34 return 0; 35 36 /* Get the SCSI cmd opcode */ opcode = ((char *)urb->transfer_buffer) [LUM_SCSI_CMD_IDX]; 37 38 39 /* Current only handle WRITE_10 for Kingston */ 40 switch (opcode) { 41 **case** WRITE_10: 42 return 1; 43 default: 44 break; 45 46 47 return 0; 48 }

- USBFILTER 27 kernel source files
 - 4 new files, 23 modified files
 - Across USB, SCSI, Block, and Networking subsystems
- USBTABLES
 - Internal Prolog engine
 - 21 rule constructions

Ex: Stop BadUSB Attacks

For my keyboard/mouse:

usbtables -a mymouse -v busnum=1,devnum=4,portnum=2, devpath=1.2,product="USB Optical Mouse", manufacturer=PixArt -k types=1 -t allow

usbtables -a mykeyboard -v busnum=1,devnum=3, portnum=1,devpath=1.1, product="Dell USB Entry Keyboard", manufacturer=DELL -k types=1 -t allow

usbtables -a noducky -k types=1 -t drop

For Logitech webcam C310:

usbtables -a skype -o uid=1001,comm=skype -v serial=B4482A20 -t allow

usbtables -a nowebcam -v serial=B4482A20 -t drop

For any USB storage devices: usbtables -a nodataexfil4 -l name=block_scsi_write -t drop

For Logitech USB headset:

usbtables -a logitech-headset -v ifnum=2,product= "Logitech USB Headset",manufacturer=Logitech -k direction=1 -t drop

For Nexus 4:

usbtables -a n4-charger -v product="Nexus 4" -t drop

For any phone:

usbtables -a charger -v busnum=1,portnum=4 -t drop

Scalability

USBTABLES:

Adding a new rule	Avg (ms)
20 Base Rules	5.9
100 Base Rules	5.9

USBFILTER:

Packet filtering	Avg (µs)
20 Base Rules	2.6
100 Base Rules	9.7

Throughput

Latency (µs)	1 KB	10 KB	100	1 MB	10 MB	100
Stock	97.6	98.1	99.2	105.5	741.7	5177.7
USBFILTER	97.7	98.2	99.6	106.3	851.5	6088.4
Overhead	0.1%	0.1%	0.4%	0.8%	14.8%	17.6%

Workload Performance

Discussion Questions

- What are the key contributions of the paper?
- What are the limitations to this approach?
- Criticisms / limitations of the paper?
- Do you buy this idea? Would this work well in a realistic workplace?
- Difference between ACSAC paper and USENIX Security paper?
- Funny paper titles good or bad idea?